
1

Reference Manual for CRESS
(Communication Representation Employing Systematic Specification)

© Kenneth J. Turner

Computing Science and Mathematics, University of Stirling,

Stirling FK9 4LA, Scotland

(www.cs.stir.ac.uk/~kjt)

Version 5.0 (14
th

 January 2014)

1. Introduction .. 5

CRESS Tools ... 6

2. Overview .. 6
3. Tools ... 6
4. Diagrams ... 8
5. Installation ... 9
6. Environment Variables .. 9
7. Tool Options .. 10
8. Directory Structure .. 11
9. Cress Tools .. 12

9.1 cadp_annotate .. 12
9.2 chive_font .. 14
9.3 cress_bpel... 14
9.4 cress_check .. 16
9.5 cress_cpl... 16
9.6 cress_create .. 16
9.7 cress_deploy... 18
9.8 cress_expand .. 19
9.9 cress_invoke... 20
9.10 cress_lotos .. 20
9.11 cress_realise ... 21
9.12 cress_sdl ... 21
9.13 cress_statistics .. 22
9.14 cress_test .. 22
9.15 cress_undeploy ... 23
9.16 cress_validate ... 23
9.17 cress_verify .. 24
9.18 cress_vxml ... 24

10. Diagram Editors ... 25

CRESS Syntax .. 26

11. Diagrams ... 26
11.1 Diagram Structure .. 26
11.2 Rule Boxes ... 27
11.3 Node Labels ... 27
11.4 Diagram Parsing .. 28
11.5 Diagram Checking ... 28

12. Expressions .. 29
12.1 General Rules ... 29
12.2 Translation to BPEL .. 29

http://www.cs.stir.ac.uk/~kjt/

2

12.3 Translation to CPL ... 30
12.4 Translation to Lotos ... 30
12.5 Translation to SDL ... 31
12.6 Translation to VoiceXML .. 31

CRESS Application Domains .. 33

13. Overview .. 33
14. DS (Device Services) ... 33

14.1 Configuration Diagram .. 34
14.2 Services/Features ... 34
14.3 Signals .. 34
14.4 Actions ... 34
14.5 Events .. 34
14.6 Dynamic (Run-Time) Variables .. 34
14.7 Variable Types ... 35
14.8 Specification Validation .. 35

15. GS (Grid Services) .. 35
15.1 Configuration Diagram .. 35
15.2 Services/Features ... 35
15.3 Signals .. 36
15.4 Actions ... 36
15.5 Events .. 36
15.6 Dynamic (Run-Time) Variables .. 36
15.7 Variable Types ... 36
15.8 Specification Validation .. 36
15.9 Specification Verification .. 37
15.10 Implementation Validation .. 38

16. IN (Intelligent Network) ... 39
16.1 Configuration Diagram .. 39
16.2 Services/Features ... 39
16.3 Signals .. 40
16.4 Static (Profile) Variables.. 41
16.5 Dynamic (Run-Time) Variables .. 41
16.6 Announcement Messages... 42
16.7 Variable Types ... 42
16.8 Specification Validation .. 42

17. IVR (Interactive Voice Response) ... 44
17.1 Configuration Diagram .. 44
17.2 Services/Features ... 44
17.3 Signals .. 45
17.4 Actions ... 45
17.5 Events .. 46
17.6 Variable Interpolation .. 46
17.7 Platform Variables ... 46
17.8 Variable Types ... 46
17.9 Specification Validation .. 47
17.10 Specification Verification .. 49

18. SIP (Session Initiation Protocol) ... 50
18.1 Configuration Diagram .. 50
18.2 Services/Features ... 50
18.3 Signals .. 50
18.4 Static (Profile) Variables.. 51
18.5 Dynamic (Run-Time) Variables .. 52
18.6 Announcement Messages... 52

3

18.7 Variable Types ... 52
18.8 Specification Validation .. 53

19. SS (Statistics Services) .. 54
19.1 Configuration Diagram .. 54
19.2 Services/Features ... 54
19.3 Signals .. 54
19.4 Actions ... 54
19.5 Events .. 54
19.6 Dynamic (Run-Time) Variables .. 54
19.7 Variable Types ... 55
19.8 Specification Validation .. 55
19.9 Specification Verification .. 55
19.10 Implementation Validation .. 56

20. VoIP (Voice over Internet Protocol) ... 56
20.1 Configuration Diagram .. 56
20.2 Services/Features ... 56
20.3 Actions ... 57
20.4 Guards .. 57

21. WS (Web Services) ... 58
21.1 Configuration Diagram .. 58
21.2 Services/Features ... 58
21.3 Signals .. 58
21.4 Actions ... 59
21.5 Events .. 59
21.6 Dynamic (Run-Time) Variables .. 59
21.7 Variable Types ... 59
21.8 Specification Validation .. 60
21.9 Specification Verification .. 61
21.10 Implementation Validation .. 62

CRESS Target Languages ... 63

22. Overview .. 63
23. Working with BPEL ... 63
24. Working with CPL ... 65
25. Working with Lotos .. 66
26. Working with SDL ... 67
27. Working with VoiceXML .. 67

CRESS File Manifest ... 69

28. General Files ... 69
28.1 Naming Conventions ... 69
28.2 Binary Files (directory bin) .. 69
28.3 Documentation Files (directory doc) ... 70
28.4 Support Files (directory supp) ... 70
28.5 Test Files (directory test) ... 71

29. Application Domain Files ... 71
29.1 Chisel Files (directory chisel) .. 71
29.2 Device Service Files (directory ds) .. 71
29.3 Grid Service Files (directory gs) .. 72
29.4 Intelligent Network Files (directory in) ... 72
29.5 Interactive Voice Response Files (directory ivr) ... 72
29.6 Session Initiation Protocol Files (directory sip) ... 73
29.7 Statistics Service Files (directory ss) ... 73
29.8 Voice over Internet Protocol Files (directory voip) 73

4

29.9 Web Service Files (directory ws) ... 74
30. Target Language Files .. 74

30.1 BPEL/WSDL Files (directory bpel) ... 74
30.2 CPL Files (directory cpl) ... 74
30.3 Lotos Files (directory lotos) ... 74
30.4 SDL Files (directory sdl) ... 75
30.5 VoiceXML Files (directory vxml) ... 76

31. CRESS Licence ... 76
32. History ... 76

32.1 Versions 1.0 – 2.0 .. 76
32.2 Version 2.1 ... 76
32.3 Version 2.2 ... 77
32.4 Version 2.3 ... 77
32.5 Version 2.4 ... 77
32.6 Version 2.5 ... 77
32.7 Version 2.6 ... 77
32.8 Version 2.7 ... 77
32.9 Version 2.8 ... 77
32.10 Version 2.9 ... 77
32.11 Version 3.0 ... 77
32.12 Version 3.1 ... 77
32.13 Version 3.2 ... 78
32.14 Version 3.3 ... 78
32.15 Version 3.4 ... 78
32.16 Version 3.5 ... 78
32.17 Version 3.6 ... 78
32.18 Version 4.0 ... 78
32.19 Version 4.1 ... 79
32.20 Version 4.2 ... 79
32.21 Version 4.3 ... 80
32.22 Version 4.4 ... 81
32.23 Version 4.5 ... 82
32.24 Version 4.6 ... 83
32.25 Version 5.0 ... 83

5

1. Introduction

See the Cress home page for an overview of Cress and some references. Cress (Communication

Representation Employing Systematic Specification) supports:

 diagrams for the following kinds of services, though the approach is extensible for other

domains:

o DS (Device Services, i.e. BPEL/WSDL used with OSGi)

o GS (Grid Services, i.e. BPEL/WSDL)

o IN (Intelligent Network)

o IVR (Interactive Voice Response, i.e. VoiceXML)

o SIP (Session Initiation Protocol, i.e. Internet Telephony)

o SS (Statistics Service)

o VoIP (Voice over Internet Protocol, i.e. Internet Telephony with SIP/CPL)

o WS (Web Services, i.e. BPEL/WSDL)

 parsing of service diagrams prepared with one of the following editors, though the approach is

extensible for other graphical editors:

o Chive

o Diagram!

o yEd

 checking of service diagrams for syntactic and static semantic correctness

 translation of service diagrams into the following target languages, though the approach is

extensible for other languages:

o BPEL/WSDL

o CPL

o Lotos

o SDL

o VoiceXML

 miscellaneous utilities

From the user point of view, Cress simplifies service creation to the point of drawing diagrams,

clicking buttons and issuing simple commands.

From the developer point of view, Cress is a very complex toolset. It is roughly equivalent to five

compilers rolled into one, as it supports three diagram editors, five target languages, and seven

application domains. A relevant quote for Cress might be:

Ὓδραν τέμνεις
(‘You are cutting a Hydra’, Plato, Republic 426)

http://www.cs.stir.ac.uk/~kjt/research/cress.html

6

CRESS Tools

2. Overview

See the Cress home page for an overview of Cress and some references. Cress (Communication

Representation Employing Systematic Specification) supports:

 parsing of service diagrams prepared with various graph editors

 checking of service diagrams for syntactic and static semantic correctness

 translation of service diagrams into various target languages

 miscellaneous utilities

The current relationship between application domains and target languages is as follows:

Domain BPEL CPL Lotos SDL VXML

DS

GS

IN

IVR

SIP

SS

VoIP

WS

3. Tools

The following main tools are provided in the Cress toolset:

Tool Purpose

cress_bpel translate Cress diagrams to BPEL

cress_check check Cress diagrams

cress_cpl translate Cress diagrams to CPL

cress_create create BPEL service archives

cress_deploy deploy BPEL service archives

cress_expand expand macros in Cress diagrams

cress_invoke invoke a service

cress_lola clean up Lola (Lotos) simulation traces

cress_lotos translate Cress diagrams to Lotos

http://cresstools.sourceforge.net/

7

cress_sdl translate Cress diagrams to SDL

cress_sdt turn a Lola (Lotos) test process into an MSC/PR file for Tau SDT (SDL)

cress_statistics call statistics server

cress_test run JUnit tests on BPEL services

cress_tidy delete temporary CADP (Lotos), Java, Lola (Lotos) and Tau SDT (SDL) files

cress_undeploy remove a service and anything that depends on it

cress_validate validate Cress diagrams

cress_verify verify Cress diagrams

cress_vxml translate Cress diagrams to VoiceXML

sdt_in

sdt_sip

sdt_vxml

these are Tau Analyzer filters for IN, SIP and VoiceXML; set them as a filter

in the Tau SDT Analyzer dialogue

These in turn rely on various Perl modules:

Module Purpose

cress_bpel.pm Cress diagram to BPEL/WSDL translator; variants apply for each vocabulary

cress_common.pm Cress common definitions

cress_cpl.pm Cress diagram to CPL translator

cress_lexer.pm Cress lexical analyser (diagram analyser)

cress_lotos.pm Cress diagram to LOTOS translator; variant code applies for each vocabulary

cress_parser.pm Cress diagram parser (syntax analyser)

cress_sdl.pm Cress diagram to SDL translator; variant code applies for each vocabulary

cress_vxml.pm Cress diagram to VoiceXML translator

cress_vocab.pm Cress vocabularies

The relationship among the main scripts is as follows:

8

4. Diagrams

Dependent diagrams are included automatically if not already given. Repeated diagram names are

ignored. Diagram names must start with a letter or underscore, followed by letter, digits or

underscores; the case of letters is not significant. The diagram names A, FEATURES, GATES, HOME

(for DS), PROFILES and TYPES are reserved.

The name of a diagram may be followed by priority, e.g. ‘ACCOUNT:50’. This is used to

override the predefined priority of a known service/feature, or to define the priority of an unknown

one.

Each diagram directory contains various files resulting from translation into the target languages.

In addition, there is typically a *.mustard file that contains scenario-based tests of the diagram as a

Mustard file. This can be used to validate the diagram specification using either Lotos (Lola) or SDL

(Tau). There may also be a *.clove file that contains properties to be verified as a Clove file. This can

be used to verify the diagram specification using CADP.

The special diagrams FEATURES, GATES, PROFILES, TYPES may be given on their own as

parameters to trigger the translation of features or profiles (from the configuration diagram), Lotos

gates, or types (from the TYPES diagram).

Files for each domain normally live in a directory whose name corresponds to the domain

vocabulary (e.g. sip). If files are not processed in this directory, it is necessary to define the

vocabulary to the tools (e.g. -v sip). Each domain directory has its own configuration diagram whose

suffix is the vocabulary name (e.g. CONFIG_SIP). In general, a configuration diagram begins with a

line of the form:

Deploys tool_options / diagram ...

for example:

Deploys -b 2 -c -n 1 -r / FALL FALL_MOVEMENT

The tool options are optional, and are those for the domain compiler.

A blank line is required after the Deploys line. The configuration options that follow are domain-

dependent; see the relevant domain section later for more details.

9

5. Installation

To run these tools requires a Unix-like environment and Perl 5. The tools have been run on Unix

(Fedora Core 4, NextStep 3.3/OpenStep 4.2, Solaris 7/8) and Windows (XP and 7, under CygWin 1.5

and 1.7). The following tools may be required, depending on which domains and languages you

intend to use:

 to use BPEL needs ActiveBPEL 5.0 or later

 to use device services requires Knopflerfish 2.3 or later

 to use grid services requires Globus WS Core 4.2 or later

 to test device, grid or web services requires JUnit 4.0 or later or Mint, as well as MySQL 5.0

or later

 to use CPL needs a SIP server that supports it (e.g. SER)

 to use Lotos needs Lola/Topo version 3.6 or later and CADP version 2009-b or later

 to use SDL needs Tau 4.6 or later

 to edit diagrams needs Diagram! from Lighthouse Design (available for a variety of

NextStep/OpenStep systems), yEd from yWorks, or the Cress-specific editor Chive.

A Unix-like installation is assumed in the following, though it should be possible to install and

run on other platforms where Perl runs (e.g. Windows). In the following, it is assumed that the files

are extracted to $HOME/bin/cress.

For Lotos, the Stirling library files in the supp/topo directory needs to be made available to Topo.

Do this by copying supp/topo/stir.* to the Cress lotos directory or to the topo/stdlib installation

directory.

For grid services, modified address handling and RPC handling needs to be made available to

Globus WS Core. Do this by copying supp/gt4/cress.jar to globus/common/lib. In addition, copy

server-config.wsdd to globus/etc/globus_wsrf_core, replacing the current version of this file.

In a few places in the code, a Unix-like environment is assumed. Macintosh and Windows end-of-

line may not be correctly handled. Paths and filenames are assumed to have ‘/’ separators. Search

paths are assumed to have ‘:’ separators. On a Windows system, it is suggested that the CygWin

version of Perl be used (set to use Unix end-of-line); ActiveState Perl may be suitable but has not

been tried.

6. Environment Variables

The following environment variables are used. For bash and the like, typically place set/export

commands in ~/.bashrc. For csh and the like, typically place setenv commands in ~/.cshrc. For

Windows XP, set environment variables using Control Panel/System/Advanced (or similar

arrangements for later versions of Windows).

Variable Purpose

ANT_HOME
location of the Ant installation, e.g. C:/usr/local/ant (required for grid

services, used by cress_create and cress_deploy)

BPEL_LOG
Root directory in which ActiveBPEL logs are stored, e.g.

C:/Docume~1/user/AeBpelEngine (optional, used by cress_deploy)

CADP_CC
specification of the C compiler and the location of the Cress libraries

for CADP, e.g. gcc $HOME/bin/cress/supp (used by CADP)

CATALINA_HOME

location of the Tomcat installation, e.g. C:/Program Files/Tomcat (set a

dummy value if you are not using web or grid services, used by

cress_create, cress_deploy and cress_undeploy,)

CRESSPATH

a colon-separated, Unix-like directory path used to locate Cress

diagrams, e.g. .:$HOME/bin/cress/supp:$HOME/bin/cress/in; note that

the supp directory must always be included in the path

if you are using Windows, you will not be able to cite drive letters

http://www.cygwin.com/
http://sourceforge.net/projects/activebpel502/
http://www.knopflerfish.org/
http://toolkit.globus.org/toolkit/
http://www.junit.org/
http://www.cs.stir.ac.uk/~kjt/research/mint.html
http://www.mysql.com/
http://www.iptel.org/ser/
http://www.cs.stir.ac.uk/~kjt/software/lotos/topo.html
http://www.inrialpes.fr/vasy/cadp/
http://www-01.ibm.com/support/docview.wss?uid=swg21380566
http://www.yworks.com/
http://www.yworks.com/

10

unless you use CygWin references such as /C/home/me/bin/cress/in

(used by cress_common.pm and hence most Cress tools)

CRESSTEMP temporary directory (default /tmp, cress_undeploy, cress_verify)

GLOBUS_LOCATION
location of the Globus installation, e.g. C:/usr/globus (required for grid

services, used by _create, cress_deploy and cress_undeploy)

JAVA_HOME
location of the Sun JDK installation, e.g. /usr/local/jdk (optional, used

by cress_create)

JDBC_HOME
location of the MySQL JDBC installation, e.g. /usr/local/mysql

(required for grid services, used by cress_create)

JUNIT_HOME
location of the JUnit installation, e.g. /usr/local/junit (used by

cress_create)

PATH
a directory path used by a shell to locate executables, e.g. include

$HOME/bin/cress/bin (used by command line)

PERLLIB
a directory path used by Perl to locate modules, e.g. include

$HOME/bin/cress/bin (used by most tools)

R_HOME
a directory path where the R binary exits, e.g. /usr/bin (used by

cress_statistics)

STATA_HOME
a directory path where the Stata binary exits, e.g. /usr/local/stata11

(used by cress_statistics)

7. Tool Options

The options used by the main tools are summarised in the following table. Option -z is not currently

not used by any tool.

Option Purpose

-a limits annotate for CADP (cadp_annotate, cress_lotos)

-b blank removal (chive_font)

 break specification down compositionally (cress_verify)

-b memory bit state hash memory size in MB (cress_validate)

-b version BPEL version (cress_bpel)

-c omit comments (cress_bpel, cress_cpl, cress_lotos, cress_sdl, cress_vxml)

-c command

compile tests (cress_test)

command script (cress_statistics)

-d deploy (cress_deploy, cress_expand)

 suppress deadlock freedom check (cress_verify)

-d N maximum depth of exploration (cress_validate)

-e level error report level (most)

-f partners foreign partner names (cress_create, cress_lotos)

-f family font family (chive_font)

-g generate realisation (cress_validate, cress_verify)

-h help (all)

-i interleaving (cress_lotos, cress_sdl, cress_vxml)

 suppress initials safety check (cress_verify)

-i identifier instance identifier (cress_statistics)

-j operation generate Java interface code to call main operation (cress_bpel)

11

Option Purpose

-k key server authorisation key user:password@host (cress_bpel, cress_deploy,

cress_expand, cress_realise, cress_statistics, cress_test, cress_validate)

-l level indenting (cress_bpel, cress_cpl, cress_lotos, cress_sdl, cress_vxml)

 suppress livelock freedom check (cress_verify)

-l library Lotos library (cadp_annotate)

-m manual validation/verification (cress_validate, cress_verify)

-m partners merge partners (cress_bpel, cress_lotos)

-n number number of instances (cress_lotos, cress_sdl)

-o timeout operational timeout (cress_bpel)

-p suppress prompt count (cress_lotos)

 parameter check (cress_sdl)

 show BCG progress (cress_verify)

-p mode[runs] performance test (cress_validate)

-q qualified (per-scope) dispatchers (cress_lotos)

-q qualifier qualifier for Clove macro names (cress_validate, cress_verify)

-r redeploy (cress_deploy)

 repeat behaviour (cress_lotos, cress_sdl)

-r relation reduction relation (cress_verify)

-s swap diagram labels (cress_check, cress_lotos)

-s file signature definitions (cadp_annotate)

-s size font size (chive_font)

-t limit

-t target

time limit for Condor jobs (cress_statistics)

target language (cress_check, cress_realise, cress_validate, cress_verify)

-u undeploy (cress_deploy)

 user-defined iteration (cress_verify)

-v vocabulary vocabulary (most)

-w width width of line (cress_bpel, cress_check, cress_cpl, cress_lotos, cress_vxml)

-x host execution host (cress_bpel, cress_statistics)

-y diagram,... yield diagrams (cress_bpel, cress_cpl, cress_expand, cress_lotos, cress_realise,

cress_sdl, cress_vxml)

8. Directory Structure

Cress uses the following directory structure:

Directory Purpose

.archive
This top-level directory (normally hidden in Unix) contains archived translations for

each service/feature.

bin This contains Perl and shell executables.

ds

gs

in

ivr

sip

ss

Each application domain has its own top-level directory. These contain language-

independent descriptions of services/features in the domain (e.g. in/rc describes the

IN Return Call feature, ws/lender describes a Lender web service).

Each service/feature has a subdirectory with its name. In turn, these subdirectories

contain files with the same base name (e.g. ws/lender/lender.chx contains a Chive

diagram, ws/lender/lender.pdf a PDF version of this, ws/lender/lender.mustard a

12

voip

ws

...

Mustard scenario file, ws/lender/lender.clove a Clove verification file). Files

generated for a service/feature may also be accumulated in this subdirectory.

In addition to service/feature directories, there must be a configuration directory

named after the application domain (e.g. ws/config_ws). This contains a

configuration diagram that must be edited to change the selection or parameters of

services/features.

bpel

cpl

lotos

sdl

vxml

...

Each target language has its own top-level directory. Each typically contains the

fixed specification framework for the language and each application domain (e.g.

lotos/ivr.base is for Lotos specification of IVR, sdl/SIP* is for SDL specification of

SIP). These files should not be changed – unless you really know what you are

doing. The . archive subdirectory (normally hidden in Unix) contains archived

translations for major service/feature combinations (e.g. POTS plus all IN services,

BOOKING plus all relevant features for IVR services).

The specification framework is automatically combined with translations of the

service/feature diagrams listed in the configuration diagram. This results in complete

specifications for the language and the application domain (e.g. lotos/ivr.lot specifies

IVR in Lotos including whatever features were configured, sdl/SIPSystem.pr

specifies SIP in SDL including whatever features were configured).

supp

This contains supporting files: a modified WS-Addressing schema, a modified WS-

Resource interface definition, the stir library for Topo, and the types directory used

to accumulate the results of data type generation.

test This contains test files for developer use.

9. Cress Tools

The main tools are used as follows. The translators accept all options, but ignore those that are not

relevant. See the code for some examples and for how to use the minor utilities.

Most tools can be invoked without parameters to get a brief summary of how to call them. Most

tools have a customise subroutine where local variations can be set.

9.1 cadp_annotate

This script takes LOTOS files <file>.lot given on the command line, and converts them into a

form suitable for CADP <file>_cadp.lot. It requires Lola/Topo to be available. Temporary files

(*.asf, *.lfe, *.lsf) are deleted after calling Lola/Topo.

The original specification must be valid Lotos, and must define sorts, operations and equations –

through library import or through type definitions. The header and behaviour of the original

specification are copied to the new specification.

The specification must conform to certain conventions (which Cress respects). Certain Lotos

keywords must have an initial capital letters (Behavior, Behaviour, Library, Type, Where) and

must not occur in comments with an initial upper-case letter. The top-level behaviour must end in

Where, and each process instantiation in this must be on one line.

Sorts and operations are annotated according to the following flags which may be combined with

logical "and" to get a composite result:

Flag Meaning Operation Name

1 constructor

2 external

4 implemented by <RANGE>_<OPERATION> (operation) or <RANGE>_SORT (sort)

8 compared by <RANGE>_COMP

16 iterated by <RANGE>_FIRST and <RANGE>_NEXT

13

Flag Meaning Operation Name

32 printed by <RANGE>_PRINT

128 domain name

used when two or more operations have the same range and name; this

flag appends the domain sorts to qualify the name,

e.g. check : Bool,Nat -> Value is mapped to

VALUE_CHECK_BOOL_NAT

Common combinations of these are:

 sorts: 60 (printed iterated compared implemented)

 operations: 1 (constructor), 5 (implemented constructor), 6 (implemented external), 7

(implemented external constructor), 133 (internal implemented constructor).

Symbols in operation names are mapped to text as follows:

Symbol Operation Name

+ PLUS

- MINUS

* STAR

/ SLASH

\ BSLASH

= EQ

@ AT

~ TILDE

% PCENT

^ CARET

& AMP

HASH

. DOT

< LT

> GT

{ LBRACE

} RBRACE

The set_signatures subroutine defines hashes named %signature_<library>. The library name is what

may be specified with the ‘-l’ option. The entries in such a hash have three forms:

 <sort> => <flag>

sort name, flag value (typically 60)

 * : <domain1>,... -> <range> => <flag>

any operation, operation domain, range, flag value (typically 5)

 <operation> : <domain1>,... -> <range> => <flag>

operation domain, range, flag value (typically 5)

 <operation> : <domain1>,... -> <range> => <flag> <function>

operation domain, range, flag value (typically 5), implementation function

A signature file in similar format can be specified on the command line with ‘-s’. This can assign new

or replacement values to signature hashes, e.g.:
$signature_stir{"_eq_ : signal,signal -> bool"} = "6 SIGNAL_EQ";

There is a problem with the type conversion by Lola/Topo: nested types are taken to the top level.

In the process, operation signatures can be duplicated. Although these are removed, expressions using

14

alternative nested types can become ambiguous. These may need to be disambiguated with ‘Of

<sort>’.

Types generated by Cress will be properly annotated through use of the types.pl file fed into

cadp_annotate by cress_expand. Types defined in partner specification may need some additional

information. Typically this applies to types that define their own sorts. The constructors of such a sort

need to be stated explicitly. This can be achieved by annotating the partner type specifications as

follows:
table (*! 1 *) : Nat,Text,Jobs -> Table

vehicle (*! $CON *) : Text,Number,Nat -> Vehicle

These are CADP-like annotations, but their contents are values understood by cadp_annotate (i.e.

flags as might be used in the set_signatures subroutine). They are not true CADP annotations (though

they are translated into these). The annotations are either numeric or symbolic and are evaluated as

numeric expressions (e.g. ‘$CON + $IMP + $EXT’).

By default, arrays, sets and strings can contain unlimited values. This will cause problems for

verification with CADP. Their maximum size may therefore be set with the ‘-a’ option (e.g. ‘-a Deals’

to allow the default three values in this string, ‘-a Deals=1’ to allow only one value). If adding an

element to such a type would exceed this maximum, the addition is ignored. Such an addition may be

made through prefixing (‘~’), appending (‘~’) or concatenation (‘~~’) for arrays and strings, or

through insertion (‘insert’) for sets.

Arrays and strings normally have ‘~’ as the main (prefix) constructor. When these types are

limited, the constructor becomes ‘~-‘. The main constructor for sets is ‘insert’ in both unlimited and

limited cases. This aspect is handled automatically, substituting ‘~-‘ for ‘~’ in equations, whether

Cress-generated or partner-defined. To distinguish an instance of ‘~’ that may be substituted, it must

be followed by the CADP-like annotation ‘(*! ~ *)’.

A side-effect of the type annotations is that ordinary Lotos comments are removed from the

generated code.

Command-line options are as follows:

Option Purpose

-a limits

generate <service>.lotos with annotations for CADP; ‘.’ means no type limits, while

a comma-separated list has type=integer for a specific limit or type for the default

limit of 3 (default no annotations)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) – these

plus informative notes, 0 – these plus diagnostics)

-h print usage help

-l library set Lotos library (default ‘stir’)

-s file file of signature definitions

9.2 chive_font

This script normalises text in a Chive diagram by setting a standard font family, size and use of

blanks.

Option Purpose

-b remove repeated blanks (default is not to remove)

-f family specify font family (default ‘Arial Narrow’)

-h print usage help

-s size specify font size (default 10 point)

file[.chx] ... Chive diagram files to update

9.3 cress_bpel

15

This script translates Cress diagram files given on the command line to BPEL and WSDL. These may

optionally be given with a diagram suffix. Output of BPEL, PDD and WSDL files is to the directory

containing the root diagram.

A file <service>.extra is treated as extra definitions to be included in <service>_defs.wsdl, and a

file <partner>.extra is treated as extra definitions to be included in <partner>.wsdl (disregarding any

_<parent> suffix). Such a file can add <binding>, <message> and <portType> entries. However, it

can add <types> only if these do not already exist in the WSDL being modified (since only one such

section is permitted).

If the directory <partner> is found in the directory of its owning service, this will be treated as

the implementation of the partner. Otherwise, for a web service only, a dummy implementation will

be created. For a normal partner, the owning diagram is the last (highest) one in the hierarchy that

refers to the diagram. For a phantom partner, the owning diagram is the first one in the hierarchy.

The following files are generated in the directory of the main diagram:

Service Files

main

service

 a BPEL file <service>.bpel

 a PDD (Process Deployment Descriptor) file <service>.pdd

 a WSDL common definitions file <service>_defs.wsdl

 a meta-information directory META-INF, used for a service deployment descriptor

deploy.wsdd and for a WSDL catalogue wsdlCatalog.xml

 a directory <Service>Defs named after the service URN, containing common

definitions in Java

 a WSDL file <service>.wsdl

 a BPR (Business Process Archive) file <service>.bpr

partner

services

 a WSDL file <service>.wsdl; merge (shared) partners are named

<service>_<parent>.wsdl

 a WSR (Web Service Archive) file <service>.wsr

 a directory named after the partner URI, containing service skeleton and stub files

in Java

Command-line options are as follows (-a, -f, -i, -n, -p, -q, -r, -s are unused and ignored):

Option Purpose

-b version BPEL version to generate (1 – BPEL4WS, 2 – WS-BPEL 2.0 (default))

-c omit comments (default generate comments)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) – these

plus informative notes, 0 – these plus diagnostics)

-h print usage help

-j operation

create Java interface code to call the main service operation in the initial Receive:

‘’ none (default for DS, GS, WS), ‘.’ if unique (default for SS), or operation name;

note that this is currently not possible if the service input or output is a structured

type that itself contains structured values

-k key

key for BPEL server authorisation user:password@host used as the default for

plain URIs in the configuration file; if the host is given, it replaces the one in the

configuration file

-l levels of code shown by indenting (default is no level indenting)

-m partners

merge partners as a comma-separated list; this is needed only if one partner is

shared by several business processes, the merged WSDL being stored in the last

such diagram

-o timeout create Mint operational test (default, 5 sec timeout for server)

16

-v vocabulary use the named vocabulary (ds, gs, ss, ws; default is current directory, e.g. ws)

-w width of BPEL/WSDL output line in characters (default 80)

-x host

execution host for statistics script (. local host (default), @ Condor pool, ssh host);

use of ssh requires password-less execution on the remote host (i.e. prior setup of

private/public keys)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file ...
diagram files to translate into BPEL and WSDL (FEATURES, PROFILES, TYPES

are special cases)

9.4 cress_check

This script parses and checks Cress diagram files given on the command line. These may optionally

be given with a diagram suffix.

Command-line options are as follows (-k is unused and ignored):

Option Purpose

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) – these

plus informative notes, 0 – these plus diagnostics)

-h print usage help

-s swap uses new diagram label (default is old diagram label)

-t language target language (bpel, cpl, lotos, sdl, vxml; needed for some vocabularies)

-v vocab
use the named vocabulary (ds, gs, in, ivr, sip, ss, voip, ws; default is current

directory, e.g. in)

file ... diagram files to check

9.5 cress_cpl

This script translates Cress a diagram file given on the command line to CPL. (Only one service

diagram may be translated at a time.) The file may optionally be given with a diagram suffix. A single

CPL file *.cpl is generated in the directory of this diagram. In normal use, the configuration diagram

deploys just one service diagram.

Command-line options are as follows (-a, -b, -f, -i, -j, -k, -m, -n,-o, -p, -q, -r, -s, -x are unused and

ignored):

Option Purpose

-c omit comments (default generate comments)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-l levels of code shown by indenting (default is no level indenting)

-v vocabulary use the named vocabulary (voip; default is current directory, e.g. voip)

-w width of CPL output line in characters (default 80)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file ...
diagram file to translate into CPL (FEATURES, PROFILES, TYPES are special

cases)

9.6 cress_create

Convert command-line base names to service archives. If <base>.bpel exists then conversion to a

process BPR is done, else to a partner GAR/WSR. A BPEL process is bundled as BPEL, PDD and

WSDL files into <base>.bpr. A partner grid service is converted from WSDL to a Java service,

17

compiled with its implementation (if any), then turned into <base>.gar. A partner web service is

converted from WSDL to a Java service, compiled with its implementation (if any), then turned into

<base>.wsr.

If a partner name matches the regular expression given by the ‘-f’ option (default ‘_$’, i.e. a name

ending with ‘_’), it is treated as an external implementation that is not managed by Cress. No attempt

is then made to create a GAR or WSR file from it.

For GS, the following JAR files must exist in the Globus library directory

($GLOBUS_LOCATION/lib): addressing-1.0.jar, axis.jar, cog-jglobus.jar, commons-discovery.jar,

jaxrpc.jar, saaj.jar, wsdl4j.jar, wsrf_core.jar, wsrf_core_stubs.jar, wss4j.jar.

The following JAR files must exist in the Tomcat library directory ($CATALINA_HOME/lib):

activation.jar, axis.jar, commons-discovery.jar, commons-logging.jar, jaxrpc.jar, mail.jar, saaj.jar,

wsdl4j.jar.

For a BPEL process, the files used are <base>.bpel, <base>.pdd and all WSDL files in the

current directory. These are copied to a subdirectory of the same name and built there. Test programs

can use the classes defined in this subdirectory.

For a grid service partner, the implementation is created in a subdirectory named after the base

file. For example, converter_splitter.wsdl causes files to be created in sub-directory converter. This

directory must exist, and must contain implementation code in the form of Java files. These may exist

in a package (e.g. uk/ac/stir/cs/converter/*.java). Any package and file names must be consistent with

what is created from the WSDL. The partner’s WSDL file (plus any WSDL files that it imports) are

copied to the <partner>/schema subdirectory and used in the build process.

For a partner service the following definition files are generated by Axis in a sub-directory of the

current directory using the namespace (e.g. urn:LoanStarDefs implies directory LoanStarDefs,

http://my_approval.com/services implies com/my_approval/services):

File Purpose

<Type>.java class for each complex type

<Fault>Message.java class for each fault message

The implementation directory has the following structure:

File Purpose

jndi-config-deploy.xml (supplied) JNDI deployment file

server-deploy.wsdd (supplied) web service deployment file

<directory>*.java (supplied) Java implementation

<service> (generated)

a sub-directory determine by the service namespace (e.g.

urn:AlterEgo implies sub-directory AlterEgo,

http://conversions.com/services implies

com/conversions/services

lib (generated/supplied)

JAR file containing all the compiled classes for the

implementation and its data types; existing JAR files may

be placed there prior to the build

schema (generated) WSDL for the partner service and the definitions it relies on

The <service> sub-directory has the following files generated by Globus:

File Purpose

<Service>Service.java service

<Service>ServiceAddressing.java service addressing interface

<Service>ServiceAddressingLocator.java service addressing

18

<Service>ServiceLocator.java service locator

<Port>Port.java port

< Port >BindingStub.java port binding client stub

For a web service partner, the implementation is created in a subdirectory named after the base

file. For example, approver.wsdl causes files to be created in sub-directory approver. This directory

must exist, and must contain implementation code in the form of Java files. These must exist in the

relevant namespace directory (e.g. BigDeal must hold the implementation Java files such as

dealer1.java). The package and file names must be consistent with the JNDI and service deployment

files. The partner’s WSDL file (plus any WSDL files that it imports) are copied to the <partner>

subdirectory and used in the build process.

For a web service partner, the following service files are generated by AXIS in a sub-directory of

the current directory using the service namespace URI (e.g. urn:FirstRate implies directory

FirstRate, http://my_approval.com/services implies com/my_approval/services):

File Purpose

deploy.wsdd web service deployment descriptor

undeploy.wsdd web service undeployment descriptor (unused by Cress)

<Service>Service.java interface for each service

<Service>ServiceLocator.java locator for each service

<Port>Port.java interface to operations for each port

<Port>BindingImpl.java service implementation template for each binding

<Port>BindingSkeleton.java service skeleton for each binding

<Port>BindingStub.java client stub for each binding

If files <base>.java exists, they are assumed to contain implementations for the service ports. All

files <Name>BindingImpl.java are then deleted so that *.java are used. These must exist in the

appropriate package directory for each port. For example if the ports are Check and Loan, and the

service URN is FirstRate, the Java file(s) must contain classes CheckBindingImpl and

LoanBindingImpl in package FirstRate. Note that these classes must not be public classes – omit any

qualifier.

The Java compiler is currently called with the following options:

 warnings are ignored

 the target version of Java is set to 1.5 since ActiveBPEL 5.0.2 runs only under JRE 1.5.

Command-line options are as follows:

Option Purpose

-d deploy grid/web services

-e level

error report level (3 – internal errors, 2 – these plus user errors, 1

(default) – these plus informative notes, 0 – these plus

diagnostics)

-f partners

foreign partners as a comma-separated list, not be to be created or

deployed; for DS, partners whose names end with ‘_’ are always

considered to be foreign

-h print usage help

-v vocab
use the named vocabulary (ds, gs, ss, ws; default is current

directory, e.g. ws)

file[.*] ... files to be processed

9.7 cress_deploy

19

Deploy/undeploy/redeploy a business process/web service file using ActiveBPEL or a grid service

using GT4. Files are tried in the order <base>.bpr, <base>.gar, <base>.wsr.

For BPEL, the file base.upload is created in ActiveBPEL with the current user’s name. A service

will not be redeployed or undeployed unless the current user matches this. (This is for shared use of

ActiveBPEL by multiple users.)

Note that it may take up 20 to 40 seconds for ActiveBPEL to notice the (re/un)deployment. If the

service file is in use when it is re/undeployed, re/undeployment will be unsuccessful. It is then

necessary to restart Tomcat. The environment variable BPEL_LOG can optionally be defined if

deployment success should be checked.

Command-line options are as follows:

Option Purpose

-d deploy grid/web services (default)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) – these

plus informative notes, 0 – these plus diagnostics)

-h print usage help

-k key key for BPEL/CPL server authorisation user:password@host

-r redeploy grid/web services (will be undeployed first if it exists)

-u undeploy grid/web services (must exist)

file[.*] ... files to be processed

9.8 cress_expand

This script updates the BPEL, Lotos, SDL or VoiceXML file given on the command line by

expanding Cress macro calls. If a file does not have a recognised extension, it is silently ignored.

In general, the output is created from a file of the same name but with the extension .base. In the case

of Lotos, the ‘-a’ option will also create <file>_cadp.lot.

In the case of GS or WS, a number of files are copied from gs/<diagram> or ws/<diagram> to

bpel/<diagram>: *.bpel, *.pdd, *.properties, *.wsdl. Note that directory bpel/<diagram> is

removed before copying! Also note that WSDL files older than the BPEL file are ignored and not

copied. This is to ensure that WSDL files created on a previous run (e.g. due to a different feature

selection) are ignored.

If the current user does not match the creator in the BPEL file, the <service> directory will not be

replaced. (This is for shared use of ActiveBPEL by multiple users.)

In the case of an SDL file, a phase follows the filename (and must be parse for any action to be

taken). Later versions of SDT follow the phase by a directory (which is silently ignored here).

Cress macro calls appear in the file as:

Macro Purpose

Cress(Diag1,Diag2) expand diagrams Diag1 and Diag2

Cress(Diag1:10,Diag2:20) ditto with feature priorities 10 and 20 respectively

Cress(-e 2 -n 4 -v sip,Diag1,Diag2) ditto with translator options -e 2 -n 4 -v sip

Cress(Features)
expand feature definitions (from the CONFIG_<VOCAB>

diagram, extracting options/diagrams and recursing)

Cress(Gates)
expand gate definitions (from the CONFIG_<VOCAB>

diagram)

Cress(Profiles)
expand profile definitions (from the CONFIG_<VOCAB>

diagram)

Cress(Types) expand type definitions (via the TYPES diagram)

20

In the case of an SDL file, a macro call in the file is preceded by macro and ended by semicolon.

White space and comments are ignored in macro calls.

Command-line options are as follows:

Option Purpose

-d deploy SoA or CPL services (not meaningful for other domains)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-k key key for BPEL/CPL server authorisation user:password@host

-v vocab
use the named vocabulary (ds, gs, in, ivr, sip, ss, voip, ws; default is current

directory, e.g. in)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file.bpel

file.cpl

file.lot

file.pr phase

file.vxml

BPEL, CPL, Lotos or VoiceXML file to generate, or SDL file to generate plus

Tau SDT analysis phase

9.9 cress_invoke

This invokes a top-level Cress service for the domain given and vocabulary on the command line. The

service name is optionally followed by arguments (that can be given in quotes if they contain spaces).

Calling a BPEL service relies on the Java interface code that can be generated by cress_bpel with the

-j option. Command-line options are as follows (-k and -v are unused and ignored)

Option Purpose

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-t language target language (bpel, cpl, lotos, sdl, vxml; must be given)

service

argument…
service to invoke plus optional arguments

9.10 cress_lotos

This script translates Cress diagram files given on the command line to Lotos. These may optionally

be given with a diagram suffix. A single Lotos file *.lot is generated in the directory of the last-named

diagram. (If the configuration diagram defines the diagram list, note that diagrams are sorted by

priority. The ‘last-named’ one may therefore not be the last in the list.)

For GS/WS, if the file <partner>.lot is found in the directory of its owning service, this will be

treated as specifying the partner process. Otherwise a dummy process will be created. For a normal

partner, the owning diagram is the last (highest) one in the hierarchy that refers to the diagram. For a

phantom partner, the owning diagram is the first one in the hierarchy.

Command-line options are as follows (-b, -j, -k, -o, -p, -x are unused and ignored):

Option Purpose

-a limits

also generate <service>.lotos with annotations for CADP; ‘.’ means no type

limits, while a comma-separated list has type=integer for a specific limit or

type for the default limit of 3 (default no annotations)

-c omit comments (default generate comments)

21

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-f partners
foreign partners as a comma-separated list; this is needed for partners

considered to be external to the specification

-h print usage help

-i interleave parallel signals (default is serialise them)

-l levels of code shown by indenting (default is no level indenting)

-m partners

merge partners as a comma-separated list; this is needed only if one partner is

shared by several business processes, the merged processes being extracted to

the top level of the specification

-n number
number of top-level instances (default 1); note that this option replaces any

value inherited from the configuration file

-p suppress prompt count (default maintain IVR prompt count)

-q qualified dispatchers (one per scope, default integrated)

-r services

repeat behaviour for given services: ‘’ none (i.e. stop at a leaf node), ‘.’ repeat

all services, a comma-separated list identifies specific services to be repeated;

when translating for CADP (-a option), despite this option there is no repeat

inside a fault handler (including an implicit CatchAll)

-s swap uses new diagram label (default is old diagram label)

-v vocabulary
the named vocabulary (ds, gs, in, ivr, sip, ss, ws; default is current directory,

e.g. in)

-w width of Lotos output line in characters (default 80)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file ...
diagram files to translate into Lotos (FEATURES, GATES, PROFILES, TYPES

are special cases)

9.11 cress_realise

This realises and deploys the Cress service for the domain given on the command line. The

services/features deployed are those given in the corresponding configuration diagram.

Command-line options are as follows:

Option Purpose

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-k key key for server authorisation (BPEL/CPL, user:password@host)

-t language target language (bpel, cpl, lotos, sdl, vxml; must be given)

-v vocab use the named vocabulary (ds, gs, in, ivr, sip, ss, voip, ws; must be given)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file ... diagram files to check

9.12 cress_sdl

This script translates Cress diagram files given on the command line to SDL. These may optionally be

given with a diagram suffix. A single SDL file *.pr is generated in the directory of the last-named

diagram. (If the configuration diagram defines the diagram list, note that diagrams are sorted by

priority. The ‘last-named’ one may therefore not be the last in the list.)

Command-line options are as follows (-a, -b, -f, -j, -k, -m, -o, -q, -x are unused and ignored):

Option Purpose

22

Option Purpose

-c omit comments (default generate comments)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-i
interleave parallel signals (default is serialise them, and is currently the only

possibility)

-l levels of code shown by indenting (default is no level indenting)

-n number number of top-level call instances (default 3)

-p
parameter check on input (default is to allow any parameters); incorrect input is

handled according to -r (repeat input or stop)

-r services

repeat behaviour for given services; ‘.’ means all services, while a comma-

separated list identifies specific services (default is stop at a leaf node, other

values not currently checked)

-s swap uses new diagram label (default is old diagram label)

-v vocab use the named vocabulary (in, ivr, sip; default is current directory, e.g. in)

-w width of SDL output line in characters (default 80)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file ...
diagram files to translate into SDL(FEATURES, PROFILES, TYPES are special

cases)

9.13 cress_statistics

This runs the request statistics package on the given command script and parameters. The package to

used is determined by the suffix of the script (‘.R’ for R, ‘.do’ for Stata). Calculation can be

performed on the local host, on a remote host (via ssh), or via a Condor pool. In all cases, the end of

the calculation is awaited.

Since Stata or R may not be able to read secure URLs, as a convenience an argument referring to

such a file causes it to be downloaded into the directory containing the statistics script. The argument

is then changed to the plain file name. The username/password in the server key are used for HTTPS

authentication. The shorthand URL prefix dames: is translated into

https://host/download/damesZone/home, where this is the host from the server key.

Command-line options are as follows:

Option Purpose

-c command command script for statistics package (e.g. ‘open.R’, ‘save.do’)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-i identifier
instance identifier (prefixed with ‘-‘ for the script to distinguish output files,

default none)

-k key key for server authorisation (BPEL/CPL, user:password@host)

-t limit time limit for Condor jobs (default 60 minutes)

-x host

execution host (‘.’ this host (default), ‘@ ‘Condor pool, ssh host); use of ssh

requires password-less execution on the remote host (i.e. prior setup of

private/public keys)

argument ... script arguments (if required)

9.14 cress_test

23

Distributions for a JDBC connector (e.g. for MySQL) and JUnit are required to use this script. These

are defined by the JDBC_HOME and JUNIT_HOME environment variables, and require jdbc.jar and

junit.jar respectively to exist in these directories.

The script runs the JUnit test suite for the BPEL services given on the command line. The test

files may optionally be compiled first. The list of known services is defined in the customise

subroutine. Test suites must be written in advance, and must be present in the bpel/<service>/test

directory. Cress is supplied with test suites for its GS and WS service examples.

Command-line options are as follows:

Option Purpose

-c compile test files first

-e level

error report level (3 – internal errors, 2 – these plus user

errors, 1 (default) – these plus informative notes, 0 – these

plus diagnostics)

-k key

key for server authorisation user:password@host:port (all

fields are optional and treated as empty if not given; protocol

‘https’ is used if a user is given or if the port number is 443,

else ‘http’)

service ... services to test

9.15 cress_undeploy

This removes a service and anything that depends on it. This removes diagram files by moving them

to CRESSTEMP (where they may disappear at any time). For BPEL, the corresponding process and its

partners are undeployed from ActiveBPEL. This command is really intended only for use with remote

servers rather than the local system (where it will remove all the local service code).

Command-line options are as follows (-k, -t, -v are unused and ignored):

Option Purpose

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-t language target language (bpel, lotos, sdl; must be given)

-v vocabulary use the named vocabulary (ds, gs, in, ivr, sip ,ss, ws; must be given)

service... service diagrams, services (and their partners) to remove

9.16 cress_validate

This validates a Cress specification implied by the command line. The realisation is optionally

generated first.

Command-line options are as follows:

Option Purpose

-b memory bit state hash memory size in MB (default 5) – Lotos

-d depth maximum depth of exploration (default 100) – Lotos

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-g generate the realisation before validation

-h print usage help

-k key key for server authorisation (BPEL, user:password@host)

-m manual (run tests manually, default automatic)

24

-p mode[runs]
performance test (c – concurrent, s – sequential), followed by the number of

runs (default 40) – BPEL

-q qualifier qualifier for macro names (default '')

-t language target language (bpel, lotos, sdl; must be given)

-v vocabulary use the named vocabulary (ds, gs, in, ivr, sip ,ss, ws; must be given)

feature ... optional features to validate (all by default)

9.17 cress_verify

This verifies a Cress specification implied by the command line. Any features named for verification

must be present in this. The realisation is optionally generated first.

Command-line options are as follows. Option ‘-k’ is ignored.

Option Purpose

-d suppress deadlock freedom check (checked by default)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-g generate the realisation before verification

-h print usage help

-i suppress initials safety check (checked by default)

-l suppress livelock freedom check (checked by default)

-m manual verification (automatic by default)

-p show BCG progress (close window when done, default none)

-q qualifier Clove macro qualifier prefix

-r relation
reduction relation (none, branch, strong – default, taucomp – tau compression

with branching reduction, tauconf – tau confluence with branching reduction)

-t language target language (lotos - no default)

-u user iteration exists in file.f (generated from Clove by default)

-v vocab

use the named vocabulary (default is the basic filename ignoring any ‘_’ suffix,

e.g. file ‘ws.lot’ has vocabulary ‘ws’, file ‘gs_matcher_scorer.lot’ has

vocabulary ‘gs’)

-x perform exit check (not checked by default)

feature ... optional features to verify (all by default)

9.18 cress_vxml

This script translates Cress diagram files given on the command line to VoiceXML. These may

optionally be given with a diagram suffix. A single VoiceXML file *.vxml is generated in the

directory of the last-named diagram. (If the configuration diagram defines the diagram list, note that

diagrams are sorted by priority. The ‘last-named’ one may therefore not be the last in the list.)

Command-line options are as follows (-a, -b, -f, -i, -j, -k, -m, -n, -o, -p, -q, -r, -s, -x are unused and

ignored):

Option Purpose

-c omit comments (default generate comments)

-e level
error report level (3 – internal errors, 2 – these plus user errors, 1 (default) –

these plus informative notes, 0 – these plus diagnostics)

-h print usage help

-i interleave parallel actions (default is serialise them, and is currently the only

25

possibility)

-l levels of code shown by indenting (default is no level indenting)

-v vocabulary use the named vocabulary (ivr; default is current directory, e.g. ivr)

-w width of VoiceXML output line in characters (default 80)

-y diagram,... yield these diagram(s) (instead of those in the configuration file)

file ...
diagram files to translate into VoiceXML(FEATURES, PROFILES, TYPES are

special cases)

10. Diagram Editors

The best choice is to make use of the Chive graphical editor for Cress. This is Java-based and should

run on many platforms. Virtually all Cress diagrams have been provided in Chive XML format.

If Java is supported on your platform, you can use yEd instead. Download this from yWorks.

Diagrams need to be saved in GML format for Cress to use them. yEd will read .gml format as well as

its own .ygf format. The following types of symbols must be used:

comment 3D rectangle

rule box rounded rectangle

node anything else, but typically an ellipse

If you are able to run NextStep/OpenStep, you can edit and create Cress diagrams. You may be

able to download Diagram! and a licence key from the web, though the author has local copies. The

file cress.dpalette2 is a palette for this diagram editor. The following types of symbols must be used:

comment parallel lines

rule box rounded rectangle

node anything else, but typically an ellipse

Diagrams can be checked individually or in groups by running cress_check.

http://www.yworks.com/

26

CRESS Syntax

11. Diagrams

11.1 Diagram Structure

Diagram names must start with a letter or underscore, followed by letter, digits or underscores; the

case of letters is not significant. The diagram names A, Features, Gates, Profiles and Types are

reserved.

In signal names, British spelling ‘Dialogue’, ‘Dialled/Dialling’ and ‘Analyse’ may be used as well as

American ‘Dialog’, ‘Dialed/Dialing’ and ‘Analyze’.

Diagrams are structured according to the following rules:

 Multiple plain arcs joining the same pair of nodes are counted as one.

 Multiple guarded arcs joining the same pair of nodes are counted as separate.

 In a list of guards, one may be designated as ‘Else’ to mean the negation of the other

guards.

 A guard may have associated assignments. An arrow with assignments is treated as an

empty guard with assignments.

 In a graph with loops, a Source or explicit Start node is required if the top node would be

ambiguous. An implicit Start node is supplied if not given in an ordinary graph. A Start

node may be used in a Source or Target.

 Node numeric labels may optionally end with one of ‘<‘, ‘>‘, ‘&’, then ‘!’, then ‘*’. An

example is ‘<!’ or ‘>*’.

 A feature may define a template. The initial node of a template has a numeric label that

ends with ‘+’ (append to matching node), ‘-’ (prefix to matching node), ‘=‘ (replace

matching node). The initial node defines a single event. Any binding associated with the

start is appended to the corresponding original node. The template must end with a single

Finish (or empty) node, though other non-empty leaf nodes are allowed. An event node

whose numeric label ends with ‘!’ is not template-expanded (e.g. when a Dial event is for a

PIN and not for an address). Apart from this, template event nodes are subject to further

template expansion.

 If the direction of a signal is ambiguous (i.e. a node could be either input or output), the

actual node (not signal) direction can be given explicitly by using ‘<‘ (input) or ‘>‘

(output) after the node number. A node number ending in ‘&’ is shorthand for an input

node followed by an output node for the same signal content; the input node is suffixed

‘A’, while the output node is suffixed ‘B’

 The diagram in an Arrow, Sink, Source or Target node may be omitted, meaning the

current diagram.

 Arrow and Target nodes are distinguished as comprising alphabetic characters (including

‘_’ and ‘.’). Neither may have a binding. A Target node may optionally be followed by a

boolean constraint.

 Update bindings for a signal may have to be disambiguated with extra slashes between

them. Normally the rightmost space between bindings is taken as separator. Say ‘/ Last B

<- A

/ Busy B <- Check C’ so that ‘A Busy’ is not combined.

 The binding in a Sink, Source or Swap may be omitted, meaning the current binding;

useless bindings like ‘A <- A’ are ignored. If two arrows converge on the same Sink node,

this may not have an associated binding. Instead, the Sink node must be repeated with just

a single arrow to each copy.

 The binding in a Swap node is redundant and may be omitted.

27

 The label in a Source node may be given as ‘Start’ to mean the notional parent node in the

root diagram.

 A feature diagram may have several Source nodes. A Source node may not mix guarded

and unguarded descendants.

 As a translator option (-r), a leaf node is implicitly followed by the root diagram node. By

default, a leaf node terminates behaviour.

11.2 Rule Boxes

A diagram may have a rule box that gives rules in the formats below.

The following gives optional address parameters and optional diagram names that are required by

the current diagram:

Uses Address A,B / POTS

Parameters are cumulative, i.e. they are inherited by parent diagrams. A diagram will not be

parsed more than once, even if referenced in different places. Diagrams are parsed lazily, e.g. a single

top-level diagram reference may cause all dependent diagrams to be included.

The following declares and initialises a variable:

Variable := Expression

The following declares a function as a macro, to be replaced by its definition any place the

function is used:

Function Parameters <- Definition

The function definition may not refer to the function. A later definition of a function replaces the

earlier definition.

The following declares assignment(s) to be made when the signal occurs:

Signal Parameters / Variable Parameters <- Expression

The variable parameters must have been included in those of the signal. Several such rules may be

given for a signal, and are cumulative. Such assignments are implicit. In addition, explicit

assignments may also be given in an Event node. The latter override any implicit assignments for the

same variables.

A signal may be replaced by another:

Signal Parameters / Signal Parameters

11.3 Node Labels

Node labels are used as follows:

 An input or output node normally has label <diagram>.<node number>.

 If a node is marked with ‘&’, its implied input/output nodes have suffix ‘A’/’B’.

 If an input or output node is reached by more than one path, it is labelled <to diagram>.<to

node number>.<from diagram>.<from node number> (the two numbers are the same if the

node loops back to itself).

 A node instantiated in a template is numbered <diagram>_<template instance number>.<node

number>.

 An Empty node is labelled <diagram>_NULL.<noevent instance number> unless explicitly

numbered.

 An Empty node instantiated in a template is labelled <diagram>_NULL_<template instance

number>.<noevent instance number> unless explicitly numbered.

 A repeated guard is treated as a node numbered GUARD.<guard instance number>.

28

 A Source node is labelled [<diagram>]<node number>; it identifies the node in another graph

to which something should be added.

 A Target node is labelled [<diagram>]<node number>; it identifies the node in another graph

from which flow continues.

 A Swap node is labelled [<diagram>]<node number>; it identifies a matching node in another

graph that is to be modified.

 An Arrow node is labelled <link label> (alphabetical, ‘_’ and ‘.’ characters); it identifies a

matching Target node in the same graph from which flow continues.

 A Target node is labelled <link label> (alphabetical, ‘_’ and ‘.’ characters); it identifies a

matching Arrow node in the same graph that is the source of the flow.

11.4 Diagram Parsing

Graphs are parsed as follows:

 Text from ‘//’ to the end of line is treated as a comment and removed. For such a comment to

be recognised, ‘//’ must be at the start of a line or must be preceded by white space.

 The generated abstract syntax graph contains primary nodes corresponding to those of the

original Cress diagram. Each primary node is linked by means of the ‘offspring’ field: a list of

one or more primary nodes that follow. A labelled arrow corresponding to a guard or a

replacement event node is separated and treated as a primary node.

 Each primary node has a parameter field pointing to a secondary node or node list

corresponding to parameters. The secondary nodes have a subsidiary parameter node or node

list.

Kind Type Label Parameter

secondary Assignment variable expression

secondary Binding variable/expression variable/expression

secondary Connector (1) DIAGRAM.number Diagram (no Bindings)

secondary Diagram DIAGRAM Bindings

primary Event (3) condition Assignments

primary Guard condition/Else Assignments

primary Null (4) DIAGRAM.number []

secondary Replacement (5) DIAGRAM.number Diagram

primary Start DIAGRAM []

primary/secondary Statement (2) DIAGRAM.number Steps/Updates

secondary Step (6) step_name Par;Par;...

secondary Update Step Bindings/Assignments

1. Connector is one of ‘Arrow’, ‘Target’

2. Statement is one of ‘Action’, ‘Input’, ‘Output’

3. Event is vocabulary-defined

4. None is an ‘Empty’, ‘Finish’, ‘NoEvent’, ‘Null’, empty node

5. Replacement is one of ‘Sink’, ‘Source’, ‘Swap’

6. Step is vocabulary-defined

After a graph has been parsed, the Arrow and Target nodes disappear after being linked, while the

Source and Swap nodes disappear after merging with the root graph. The Sink nodes remain in the

composite graph.

11.5 Diagram Checking

Graphs are checked for consistency with the following rules:

29

 There must be a unique top node. This must be an Event or Start node for the whole diagram.

It must be a Source for a feature diagram.

 A Source node may not be followed by a Guard unless a Swap node then follows.

 The diagram and node number in a Sink, Source or Swap must exist.

 Each Arrow node needs a Target node with the same label.

 An Empty node cannot be a leaf in an ordinary diagram, but must be the single leaf for a

template. An Empty node cannot lead to itself directly.

 A leaf node must be an Event or Sink node.

 Event nodes must have a unique numeric node identifier.

 Signals must have valid names and the correct parameters.

 If multiple Inputs of the same signal follow a node, they must be distinguished by one or

more corresponding parameters with different known values (otherwise the Inputs are non-

deterministic).

 ‘Else’ may be used exactly once where there are multiple guards.

12. Expressions

12.1 General Rules

Expressions may use logical, arithmetic and string operators; these are translated as follows to a target

language. Note that operators in Cress do not have an intrinsic precedence; this may be acquired only

from the translation to another language. As a result, it is almost essential to parenthesise complex

expressions in order to achieve the same result in all target languages.

12.2 Translation to BPEL

Cress BPEL

(...) (...)

- ~ - not

* \ % * div mod

+ - + -

= != < <= >= > = != < <= >= >

&& || and or

s1 After s2 substring-after(s1,s2)

s1 Before s2 substring-before(s1,s2)

Ceiling(n) ceiling(n)

Concat(s1,s2) concat(s1,s2)

Contains(s1,s2) contains(s1,s2)

Decimal(s) decimal(s)

Ends(s1,s2) ends-with(s1,s2)

False false()

Floor(n) floor(n)

Global Pars (LHS)

<assign>

 <copy>

 <from variable="name" part="name"/>

 <to variable="name" part="name"/>

 </copy>

</assign>

Global Pars (RHS) variable

Infinity 1 div 0E0

30

Cress BPEL

Length(s) string-length(s)

Number(s) number(s)

Round(n) round(n)

Starts(s1,s2) starts-with(s1,s2)

String(v) string(v)

SubString(s,b) substring(s,b)

SubString(s,b,e) substring(s,b,e)

Translate(s1,s2,s3) translate(s1,s2,s3)

True true()

12.3 Translation to CPL

Cress CPL

= is

< subdomain-of

~ contains

12.4 Translation to Lotos

Cress Lotos

(...) (...)

- ~ - not

* \ % * / mod

+ - + -

= != < <= >= >
eq ne lt le ge gt (normally)

= /= < <= >= > (IVR)

&& || ^^ and or xor

s1 After s2 s1 after s2

Any (binding/expression) AnyAddress

Any (event) dummy

s1 Before s2 s1 before s2

Ceiling(n) ceiling(n)

Concat(s1,s2) s1 ~~ s2

Contains(s1,s2) contains(s1,s2)

Decimal(s)

Ends(s1,s2) ends(s1,s2)

False False

Floor(n) floor(n)

Global Pars (LHS) Stat!Write!Global!Pars!Val

Global Pars (RHS) Stat!Read!Global!Pars?Val

If c Then e1 Else e2 Fi conditional(c,e1,e2)

e In s e isIn s

IndexOf(s1,s2) indexOf(s1,s2)

Infinity Infinity

Length(s) length(s)

31

Cress Lotos

e NotIn s e notIn s

Round(n) round(n)

Slice(s,b) slice(s,b)

Slice(s,b,e) slice(s,b,e)

Starts(s1,s2) starts(s1,s2)

String(v)

SubStr (s,b,c) substr (s,b,c)

SubString(s,b) substring(s,b)

SubString(s,b,e) substring(s,b,e)

Time Stat!Read!Clock?Val

Translate(s1,s2,s3) translate(s1,s2,s3)

True True

12.5 Translation to SDL

Cress SDL

(...) (...)

- ~ - Not

* \ % * / Mod

+ - + -

= != < <= >= > = != < <= >= >

&& || ^^ And Or Xor

s1 After s2 After(s1,s2)

Any (binding/expression) AnyAddress

Any (event) Dummy

False False

Global Pars (LHS) Output Update(Global,Pars)

Global Pars (RHS) View(Global)(Pars)

If c Then e1 Else e2 Fi If c Then e1 Else e2 Fi

e In s e In s

IndexOf(s1,s2) IndexOf(s1,s2)

Length(s) Length(s)

e NotIn s Not(e In s)

Slice(s,b) Slice(s,b)

Slice(s,b,e) Slice(s,b,e)

SubString(s,b) SubString(s,b)

SubString(s,b,e) SubString(s,b,e)

Time Now

True True

12.6 Translation to VoiceXML

Cress VoiceXML

(...) (...)

- ~ - !

32

* \ % * / %

+ - + -

= != < <= >= > = != < <= >= >

&& || ^^ && || ^^

Any (binding/expression) Any

Any (event) Any

False false

Global Pars (LHS) <property name="variable" value="expr"/>

Global Pars (RHS) variable

If c Then e1 Else e2 Fi c ? e1 : e2

IndexOf(s1,s2) s1.indexOf(s2)

Length(s) s.length

Slice(s,b) s.slice(b)

Slice(s,b,e) s.slice(b,e)

SubString(s,b) s.substring(b)

SubString(s,b,e) s.substring(b,e)

True true

33

CRESS Application Domains

13. Overview

See the Cress home page for an overview of Cress and some references. Cress (Chisel Representation

Employing Systematic Specification) is designed for modular and extensible support of a variety of

application domains. Currently it supports services for:

 DS (Devices Services, i.e. BPEL and WSDL)

 GS (Grid Services, i.e. BPEL and WSDL)

 IN (Intelligent Network)

 IVR (Interactive Voice Response, i.e. VoiceXML)

 SIP (Session Initiation Protocol, i.e. Internet Telephony)

 SS (Statistics Services, i.e. calling statistical scripts as web services)

 VoIP (Voice over Internet Protocol, i.e. Internet Telephony with SIP/CPL)

 WS (Web Services, i.e. BPEL and WSDL)

Cress is also designed to support a variety of target languages. Currently it supports translation to:

 BPEL/WSDL

 CPL

 Lotos

 SDL

 VoiceXML

though the supported translations vary among domains. These notes focus on how Cress is used with

various application domains and, where relevant, how support varies among target languages.

14. DS (Device Services)

Device services resemble web services in allowing device-to-device communication using web-like

mechanisms. A device service exists as a BPEL process. DS applications typically make use of

features, but these must start with <root>_ to allow feature diagrams to be distinguished from root

diagrams during translation to Lotos.

A device service may receive device_in events from OSGi, and may send device_out events to

OSGI – both via a SOAP proxy. OSG device events carry the following fields:

Argument Purpose

arg1 message type

arg2 entity name

arg3 entity instance

arg4 message period

arg5 parameter values

These are mapped to web services as partner entity_name, port in or out, operation message_type.

The remaining arguments (entity_instance, message_period, parameter_values) are mapped to a

device record that is sent along with the web request. This type is predefined in Cress with name

Device, fields instance, period and params.

http://cresstools.sourceforge.net/

34

A BPEL process receives a device event from OSGi using ‘Receive entity.in.message’ or

‘Receive entity.out.message’. A BPEL process sends a device event to OSGi using ‘Device

entity.in.message’ or ‘Device entity.out.message’. This is just a disguised Invoke: the Device partner

name has ‘_’ appended to it to indicate the corresponding (‘shadow’) partner in OSGi.

14.1 Configuration Diagram

The configuration diagram starts with a Deploys line and then a blank line (see section 4).

Service configuration lines are then the same as for WS (section21.1), except that a HOME

partner must be defined first. This gives the base URI of the OSGi web service that supports shadow

device partners. Subsequent partners in the DS configuration diagram correspond to business

processes in ActiveBPEL.

When translating to BPEL, a second partner is automatically declared for each partner. This is

similar to the main partner, but the partner name, prefix and URI have ‘_’ appended to them, and the

URL is that of HOME (i.e. OSGi). These ‘shadow partners’ correspond to device classes in OSGi.

14.2 Services/Features

Most DS features are service-specific.

Feature Purpose

CUPBOARD monitor cupboard status (root)

DOOR monitor door status (root)

DOOR_ALL lock/unlock all doors (feature)

DOOR_LIGHT turn on light on entering house (feature)

DOOR_LOUNGE set lounge environment on entry (feature)

FALL monitor fall status (root)

FALL_MOVEMENT report alert if no movement after fall (feature)

HEATING monitor heating status (root)

HEATING_FROST report freezing alert if heating turned off when frosty (feature)

SPEECH monitor speech as text (root)

SPEECH_HELP provide weather/help spoken advice (feature)

WEATHER dummy weather service (root)

WINDOW monitor window status (root)

14.3 Signals

These are the same as for WS (section 21.3).

14.4 Actions

These are the same as for WS (section 21.4).

14.5 Events

These are the same as for WS (section 21.3).

14.6 Dynamic (Run-Time) Variables

35

These are the same as for WS (section 21.6).

14.7 Variable Types

These are the same as for WS (section 21.7) except that the following is also allowed:

Variable

Certificate

14.8 Specification Validation

Lotos Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Lola 3.7.2 and Mustard 1.8.

Validation of DOOR and its features using the generated Lotos specification:
Test DOOR ALL Lock Doors ... Pass 1 succ 0 fail 1.3 secs

Test DOOR ALL Unlock Doors ... Pass 1 succ 0 fail 0.5 secs

Test DOOR LIGHT Front Open ... Pass 1 succ 0 fail 0.4 secs

Test DOOR LIGHT Back Open ... Pass 1 succ 0 fail 0.4 secs

Test DOOR LIGHT Other Open ... Pass 1 succ 0 fail 0.4 secs

Test DOOR LOUNGE Dark Open ... Pass 2 succ 0 fail 0.4 secs

Test DOOR LOUNGE Light Open ... Pass 3 succ 0 fail 0.4 secs

Test DOOR LOUNGE Other Open ... Pass 1 succ 0 fail 0.4 secs

Validation of FALL and its features using the generated Lotos specification:
Test FALL MOVEMENT Fall Alert ... Pass 2 succ 0 fail 1.3 secs

Validation of HEATING and its features using the generated Lotos specification:
Test HEATING FROST Off Freezing ... Pass 1 succ 0 fail 1.2 secs

Test HEATING FROST Off Mild ... Pass 1 succ 0 fail 0.4 secs

Validation of SPEECH and its features using the generated Lotos specification:
Test SPEECH HELP Weather ... Pass 1 succ 0 fail 1.3 secs

Test SPEECH HELP Help Friend ... Pass 1 succ 0 fail 0.4 secs

Test SPEECH HELP Help Doctor ... Pass 1 succ 0 fail 0.4 secs

Test SPEECH HELP Help Other ... Pass 1 succ 0 fail 0.5 secs

Test SPEECH HELP Other Request ... Pass 1 succ 0 fail 0.4 secs

15. GS (Grid Services)

Grid services resemble web services in allowing application-to-application communication using

web-like mechanisms. Grid services differ through use of resources and specific grid mechanisms. GS

applications usually do not make use of features.

15.1 Configuration Diagram

The configuration diagram starts with a Deploys line and then a blank line (see section 4).

Service configuration lines are the same as for WS (section21.1), except that each finishes with a

resource declaration (a Cress variable declaration). If no resource is required, ‘-’ must be given as the

presence of a resource is how grid services are distinguished from web services.

15.2 Services/Features

Some GS features are general-purpose and could be used with many services, while others are

service-specific.

Feature Purpose

ANALYSER conditional frequency analysis of occupational survey data (root, used by SPLITTER)

36

MATCHER
document comparison, based on clause length and word frequency (root, making use of

SCORER)

SCORER compute document clause length and word frequency (root, used by MATCHER)

SPLITTER
conditional frequency analysis of occupational survey data, splitting on some criterion

(root, making use of ANALYSER)

15.3 Signals

These are the same as for WS (section 21.3).

15.4 Actions

These are the same as for WS (section 21.4).

15.5 Events

These are the same as for WS (section 21.5).

15.6 Dynamic (Run-Time) Variables

These are the same as for WS (section 21.6).

15.7 Variable Types

These are the same as for WS (section 21.6) except that the following is also allowed:

Variable

Certificate

15.8 Specification Validation

Lotos validation was performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Lola 3.7.2 and Mustard 1.8.

Validation of DOUBLEMAP using the generated Lotos specification:
Test DOUBLEMAP No Records ... Pass 1 succ 0 fail 0.5 secs

Test DOUBLEMAP Invalid Position ... Pass 1 succ 0 fail 0.5 secs

Test DOUBLEMAP Map 2 To Any ... Pass 1 succ 0 fail 0.5 secs

Test DOUBLEMAP Map 2 To 4 ... Pass 1 succ 0 fail 0.6 secs

Validation of LOOKUP (and implicitly ALLOCATOR) using the generated Lotos specification:
Test ALLOCATOR Unknown Scheme ... Pass 3 succ 0 fail 1.5 secs

Test ALLOCATOR Unknown Job ... Pass 1 succ 0 fail 0.6 secs

Test ALLOCATOR SOC2000 Nurse ... Pass 1 succ 0 fail 0.5 secs

Test ALLOCATOR SIC92 Nurse ... Pass 1 succ 0 fail 0.5 secs

Test LOOKUP Unknown Scheme1 ... Pass 7 succ 0 fail 0.7 secs

Test LOOKUP Unknown Scheme2 ... Pass 7 succ 0 fail 0.6 secs

Test LOOKUP Unknown Job ... Pass 20 succ 0 fail 0.5 secs

Test LOOKUP Bookbinder Codes ... Pass 1 succ 0 fail 0.6 secs

Test LOOKUP Nurse Codes ... Pass 1 succ 0 fail 0.5 secs

Test LOOKUP Parallel Codes ... Pass 2 succ 0 fail 0.7 secs

Validation of MATCHER (and implicitly SCORER) using the generated Lotos specification:
Test MATCHER No Clauses ... Pass 191 succ 0 fail 9.1 secs

Test MATCHER One Shared ... Pass 2 succ 0 fail 15.9 secs

Test MATCHER Nothing Shared ... Pass 2 succ 0 fail 32.1 secs

Test MATCHER All Shared ... Pass 2 succ 0 fail 27.9 secs

Test MATCHER Lengthy Text ... Pass 2 succ 0 fail 9.0 mins

Validation of SPLITTER (and implicitly ANALYSER) using the generated Lotos specification:
Test SPLITTER No Jobs ... Pass 2 succ 0 fail 1.5 secs

37

Test SPLITTER Invalid Query ... Pass 16 succ 0 fail 0.6 secs

Test SPLITTER Valid Query ... Pass 31 succ 0 fail 0.6 secs

Test SPLITTER No Plumbers ... Pass 2 succ 0 fail 0.7 secs

Test SPLITTER All Plumbers ... Pass 2 succ 0 fail 0.6 secs

Test SPLITTER Plumber Welder ... Pass 2 succ 0 fail 0.9 secs

Test SPLITTER Mixed Jobs ... Pass 2 succ 0 fail 1.3 secs

Test SPLITTER Female Jobs ... Pass 2 succ 0 fail 1.7 secs

Test SPLITTER Over 20 Jobs ... Pass 2 succ 0 fail 1.4 secs

Test SPLITTER Under 20 Jobs ... Pass 2 succ 0 fail 1.3 secs

Test SPLITTER Sequential Use ... Pass 7 succ 0 fail 10.4 secs

Test SPLITTER Concurrent Use ... Pass 14 succ 0 fail 10.9 secs

15.9 Specification Verification

Lotos Verification: performed using CADP 2009-c on a 2.67GHz i920 processor, 4Gb memory,

Windows XP, CygWin 1.7.7-1 and Clove 1.3.

Verification of DOUBLEMAP using the annotated Lotos specification and options ‘-x -r taucomp’:
Generating properties for DOUBLEMAP ... CPU Time (Real Time)

Generating graph for DOUBLEMAP ... 22.0 secs (1.7 mins)

 (states/transitions/labels: 15/19/7 -> 4/6/7)

Verifying DOUBLEMAP Missing Records ... Success 6.6 secs (12.0 secs)

Verifying DOUBLEMAP Wrong Occupation Position ...Success 6.5 secs (11.0 secs)

Verifying DOUBLEMAP Any Map Response ... Success 6.5 secs (12.0 secs)

Verifying DOUBLEMAP General Map Response ... Success 6.5 secs (12.0 secs)

Verifying DOUBLEMAP Map Position 2 To 4 ... Success 6.4 secs (11.0 secs)

Verifying DOUBLEMAP Livelock Freedom ... Success 6.6 secs (14.0 secs)

Verifying DOUBLEMAP Initials Safety ... Success 6.4 secs (11.0 secs)

Verification of LOOKUP (and implicitly ALLOCATOR) using the annotated Lotos specification and

options ‘-d -x -r taucomp’:
Generating properties for ALLOCATOR ... CPU Time (Real Time)

Generating graph for ALLOCATOR ... 22.0 secs (2.1 mins)

 (states/transitions/labels: 39/55/11 -> 2/10/11)

Verifying ALLOCATOR Livelock Freedom ... Success 6.3 secs (15.0 secs)

Verifying ALLOCATOR Initials Safety ... Success 6.4 secs (12.0 secs)

Verifying ALLOCATOR Always Exit ... Success 6.5 secs (12.0 secs)

Generating properties for LOOKUP ... CPU Time (Real Time)

Generating graph for LOOKUP ... 22.1 secs (2.1 mins)

 (states/transitions/labels: 49/221/7 -> 5/6/7)

Verifying LOOKUP Unknown Scheme1 ... Success 6.5 secs (12.0 secs)

Verifying LOOKUP Unknown Scheme2 ... Success 6.2 secs (12.0 secs)

Verifying LOOKUP Unknown Job ... Success 6.3 secs (11.0 secs)

Verifying LOOKUP Any Translation Response ... Success 6.4 secs (12.0 secs)

Verifying LOOKUP General Translation Response ...Success 6.9 secs (13.0 secs)

Verifying LOOKUP Bookbinder Codes ... Success 6.5 secs (12.0 secs)

Verifying LOOKUP Livelock Freedom ... Success 6.3 secs (14.0 secs)

Verifying LOOKUP Initials Safety ... Success 6.5 secs (12.0 secs)

Verifying LOOKUP Always Exit ... Success 6.3 secs (12.0 secs)

Verification of MATCHER (and implicitly SCORER) using the annotated Lotos specification and

options ‘-d -x -r taucomp’:
Generating properties for SCORER ... CPU Time (Real Time)

Generating graph for SCORER ... 22.1 secs (57.0 secs)

 (states/transitions/labels: 6/13/10 -> 2/9/10)

Verifying SCORER Livelock Freedom ... Success 6.2 secs (10.0 secs)

Verifying SCORER Initials Safety ... Success 6.2 secs (7.0 secs)

Verifying SCORER Always Exit ... Success 6.0 secs (7.0 secs)

Generating properties for MATCHER ... CPU Time (Real Time)

Generating graph for MATCHER ... 22.4 secs (1.7 mins)

 (states/transitions/labels: 36928/100242/74 -> 11/73/74)

Verifying MATCHER Missing First Text ... Success 6.3 secs (7.0 secs)

Verifying MATCHER Missing Second Text ... Success 6.4 secs (8.0 secs)

Verifying MATCHER Any Metric Response ... Success 6.4 secs (7.0 secs)

Verifying MATCHER General Metric Response ... Success 6.3 secs (8.0 secs)

38

Verifying MATCHER Specific Texts ... Success 6.3 secs (8.0 secs)

Verifying MATCHER Same Texts ... Success 6.3 secs (7.0 secs)

Verifying MATCHER Livelock Freedom ... Success 6.4 secs (10.0 secs)

Verifying MATCHER Initials Safety ... Success 6.3 secs (7.0 secs)

Verifying MATCHER Always Exit ... Success 6.1 secs (7.0 secs)

Verification of SPLITTER (and implicitly ANALYSER) using the annotated Lotos specification and

options ‘-d -x -r taucomp’:
Generating properties for ANALYSER ... CPU Time (Real Time)

Generating graph for ANALYSER ... 22.6 secs (59.0 secs)

 (states/transitions/labels: 81/81/82 -> 2/81/82)

Verifying ANALYSER Livelock Freedom ... Success 6.5 secs (9.0 secs)

Verifying ANALYSER Initials Safety ... Success 6.2 secs (8.0 secs)

Verifying ANALYSER Always Exit ... Success 6.3 secs (7.0 secs)

Generating properties for SPLITTER ... CPU Time (Real Time)

Generating graph for SPLITTER ... 22.6 secs (1.5 mins)

 (states/transitions/labels: 66/285/7 -> 5/6/7)

Verifying SPLITTER Invalid Query ... Success 6.4 secs (7.0 secs)

Verifying SPLITTER No Jobs ... Success 6.5 secs (8.0 secs)

Verifying SPLITTER No Plumbers ... Success 6.3 secs (7.0 secs)

Verifying SPLITTER Any Analysis Response ... Success 6.3 secs (8.0 secs)

Verifying SPLITTER General Analysis Response ... Success 6.5 secs (8.0 secs)

Verifying SPLITTER Female Jobs ... Success 6.6 secs (7.0 secs)

Verifying SPLITTER Livelock Freedom ... Success 6.4 secs (10.0 secs)

Verifying SPLITTER Initials Safety ... Success 6.3 secs (7.0 secs)

Verifying SPLITTER Always Exit ... Success 6.5 secs (7.0 secs)

15.10 Implementation Validation

BPEL Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Mint 1.2 and Mustard 1.8.

Validation of DOUBLEMAP using the generated Bpel implementation:
Test DOUBLEMAP No Records ... Pass 1 succ 0 fail 1.4 secs

Test DOUBLEMAP Invalid Position ... Pass 1 succ 0 fail 0.5 secs

Test DOUBLEMAP Map 2 To Any ... Pass 1 succ 0 fail 0.4 secs

Test DOUBLEMAP Map 2 To 4 ... Pass 1 succ 0 fail 0.5 secs

Validation of LOOKUP (and implicitly ALLOCATOR) using the generated Bpel implementation:
Test ALLOCATOR SOC2 Nurse ... Pass 1 succ 0 fail 0.5 secs

Test ALLOCATOR SIC Nurse ... Pass 1 succ 0 fail 0.6 secs

Test ALLOCATOR SOC2 Unknown ... Pass 1 succ 0 fail 0.6 secs

Test ALLOCATOR Unknown Nurse ... Pass 1 succ 0 fail 0.5 secs

Test LOOKUP SOC SIC Bookbinder ... Pass 1 succ 0 fail 0.6 secs

Test LOOKUP SOC SIC Nurse ... Pass 1 succ 0 fail 0.6 secs

Test LOOKUP SOC SIC Parallel ... Pass 4 succ 0 fail 0.9 secs

Test LOOKUP SOC SIC Unknown ... Pass 1 succ 0 fail 0.6 secs

Test LOOKUP Unknown SIC Nurse ... Pass 1 succ 0 fail 0.5 secs

Test LOOKUP SOC Unknown Nurse ... Pass 1 succ 0 fail 0.7 secs

Validation of MATCHER (and implicitly SCORER) using the generated Bpel implementation:
Test MATCHER No Clauses ... Pass 1 succ 0 fail 0.7 secs

Test MATCHER One Shared ... Pass 1 succ 0 fail 0.6 secs

Test MATCHER Nothing Shared ... Pass 1 succ 0 fail 0.6 secs

Test MATCHER All Shared ... Pass 1 succ 0 fail 0.6 secs

Test MATCHER Lengthy Text ... Pass 1 succ 0 fail 0.7 secs

Validation of SPLITTER (and implicitly ANALYSER) using the generated Bpel implementation:
Test SPLITTER No Jobs ... Pass 1 succ 0 fail 1.7 secs

Test SPLITTER Invalid Query ... Pass 1 succ 0 fail 0.7 secs

Test SPLITTER Valid Query ... Pass 1 succ 0 fail 0.8 secs

Test SPLITTER No Plumbers ... Pass 1 succ 0 fail 0.8 secs

Test SPLITTER All Plumbers ... Pass 1 succ 0 fail 0.8 secs

Test SPLITTER Plumber Welder ... Pass 1 succ 0 fail 1.1 secs

Test SPLITTER Mixed Jobs ... Pass 1 succ 0 fail 0.9 secs

39

Test SPLITTER Female Jobs ... Pass 1 succ 0 fail 1.0 secs

Test SPLITTER Over 20 Jobs ... Pass 1 succ 0 fail 1.0 secs

Test SPLITTER Under 20 Jobs ... Pass 1 succ 0 fail 1.0 secs

Test SPLITTER Sequential Use ... Pass 1 succ 0 fail 1.6 secs

Test SPLITTER Concurrent Use ... Pass 4 succ 0 fail 3.0 secs

16. IN (Intelligent Network)

The Intelligent Network was designed to allow easy development and deployment of features in

addition to the basic call. It is governed by the ITU Q.1200 series of recommendations. IN features

are typically implemented in Service Control Points using specialised service creation software.

16.1 Configuration Diagram

The configuration diagram starts with a Deploys line and then a blank line (see section 4).

Feature configuration lines are then per subscriber and have the form:

feature number parameters

for example:

INFR 6 From Any To 9 Start 8 Finish 18

The configuration lines vary according to the feature, so here are concrete examples for CC (Charge

Call), CFBL (Call Forward Busy Line), CFU (Call Forward Unconditional), CW (Call Waiting),

INCF (Intelligent Network Call Forward), INFB (Intelligent Network Freephone Billing), INFR

(Intelligent Network Freephone Routing), INTL (Intelligent Network Teen Line) and TCS

(Terminating Call Screening). RC (return call) and TWC (three-way calling) are service options are

not configured per subscriber.

 CC 4 Pin 5 // 4 accepts charge requests with PIN 5

 CFBL 3 To 5 // 3 forwards on busy to 5

 CFU 5 // 5 forwards unconditionally

 CND 3 // 3 has caller display

 CW 2 // 2 has call waiting

 INCF 5 To 10 // 5 forwards to 10

 INFB 1 // 1 pays for calls it receives

 INFR 6 From Any To 9 Start 8 Finish 18 // 6 forwards from any number to 9, 08.00–18.00

 INTL 2 Pin 3 Start 9 Finish 17 // 2 needs PIN 3, 09:00–17:00

 TCS 2 From 1 8 // 2 rejects calls from 1 and 8

16.2 Services/Features

The following features for the IN are closely patterned after those in the first Feature Interaction

Contest.

Feature Purpose

CC Charge Card (feature)

CFBL Call Forward Busy Line (feature)

CND Calling Number Display (feature)

INCF Intelligent Network Call Forward (feature)

INFB Intelligent Network FreePhone Billing (feature)

INFR Intelligent Network FreePhone Routing (feature)

INTL Intelligent Network Teen Line (feature)

POTS Plain Old Telephone Service (root)

RC Return Call (feature)

TCS Terminating Call Screening (feature)

TWC Three-Way Call (feature)

40

16.3 Signals

Signal Parameters

SCP to Switch

AnalyzeRoute (1) Address,Address,Address,Address

Continue (1,2) Address,Address,Address

ForwardCall (1) Address,Address,Address

Resource (1,3) Address,Address

SendToResource (1) Address,Address,Message

Terminate (1,3) Address,Address

Switch to Billing

AirBegin Address,Time

AirEnd Address,Time

LogBegin Address,Address,Address,Time

LogEnd Address,Address,Time

Switch to SCP

InfoAnalyzed (4,6) Address,Address,Address

InfoCollected (4) Address,Address,Address

NetworkBusy (4) Address,Address,Address

OriginationAttempt (4) Address,Address,Address

TerminationAttempt (4) Address,Address,Address

Resource (4) Address,Address

ResourceAbort (4,5) Address,Address

Switch to Status Manager

StartBilling (7) Address,Address

StopBilling (7) Address,Address

UpdateAA (7,8) Status,Address,Address

UpdateAB (7,8) Status,Address,Boolean

UpdateAL (7,8) Status,Address,List

UpdateAT (7,8) Status,Address,Time

UpdateAAA (7,8) Status,Address,Address,Address

UpdateAAB (7,8) Status,Address,Address,Boolean

UpdateAAT (7,8) Status,Address,Address,Time

Switch to User

Announce Address,Message

DialTone Address

Disconnect Address,Address

Display Address,Message

LineBusyTone Address

StartAudibleRinging (9) Address,Address

StartCallWaitingTone (9) Address,Address

StartRinging (9,10) Address,Address[,Address]

StopAudibleRinging (9) Address,Address

StopCallWaitingTone (9) Address,Address

StopRinging (9) Address,Address

41

Signal Parameters

UnobtainableTone Address

User to Switch

Answer (11) Address

Dial Address,Address

Flash Address

OffHook Address

OnHook Address

1. Preceded in Chisel by ‘Response’ but automatically removed. Since ‘Response Disconnect’ is

then ambiguous, ‘Terminate’ is used instead.

2. Translated as ‘Continued’ in SDL since ‘Continue’ is a reserved word.

3. Incorrectly shown in Chisel as having three address parameters.

4. Preceded in Chisel by ‘Trigger’ but automatically removed.

5. Not defined in Chisel but needed on hang-up after ‘SendToResource’.

6. British spelling ‘Analyse’ accepted but converted to ‘Analyze’.

7. Not defined in Chisel.

8. Used in the SDL translation.

9. As in Chisel, a space after ‘Start’/’Stop’ is removed.

10. The optional ‘address’ is the code for a cadence.

11. Not defined in Chisel, but needed to disambiguate ‘OffHook’.

16.4 Static (Profile) Variables

Variable Parameters Result

CallingNumber (4) Address Boolean

CallWaiting Address Boolean

Cellular Address Boolean

ForwardBusy (2) Address Address

ForwardTo Address Address

Freephone (4) Address Boolean

RedirectAddress Address,Address Address

RedirectTime1 Address,Address Time

RedirectTime2 Address,Address Time

ScreenIn Address Addresses

ScreenOut (3) Address Addresses

TeenPIN Address Address

TeenTime1 Address Time

TeenTime2 Address Time

1. Charge in Chisel.

2. BLForward in Chisel.

3. Screened in Chisel.

4. Not defined in Chisel.

16.5 Dynamic (Run-Time) Variables

Variable Parameters Result

AudibleRinging Address,Address Boolean

42

Bill (2) Address,Address Address

Busy Address Boolean

By (2) Address,Address Address

Dialing (1) Address Boolean

LastIncoming Address Address

ReturnCall Address,Address Boolean

Ringing Address,Address Boolean

ThreeWay Address Boolean

1. British spelling ‘Dialling’ accepted but converted to ‘Dialing’.

2. Not defined in Chisel.

16.6 Announcement Messages

Variable

AnyMessage

AskForPIN (1)

EnterPhoneNumber

EnterPIN

InvalidPIN

ScreenedMessage

1. Accepted as in Chisel, but converted to ‘EnterPIN’.

16.7 Variable Types

Variable

Address

Message

Time

16.8 Specification Validation

Lotos Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Lola 3.7.2 and Mustard 1.8.

Validation of POTS and its features using the generated Lotos specification:
Test POTS Clear Before Dial ... Pass 3 succ 0 fail 1.7 secs

Test POTS Clear Before Answer ... Pass 3 succ 0 fail 0.7 secs

Test POTS Caller Clear ... Pass 6 succ 0 fail 0.7 secs

Test POTS Callee Clear ... Pass 6 succ 0 fail 0.7 secs

Test POTS Call Self ... Pass 3 succ 0 fail 0.6 secs

Test POTS Call Busy ... Pass 11 succ 0 fail 0.8 secs

Test POTS Simultaneous Call ... Pass 11 succ 0 fail 0.9 secs

Test INTL No Teen Line ... Pass 6 succ 0 fail 0.7 secs

Test INTL Early ... Pass 6 succ 0 fail 0.7 secs

Test INTL No PIN ... Pass 3 succ 0 fail 0.6 secs

Test INTL Wrong PIN ... Pass 3 succ 0 fail 0.5 secs

Test INTL Right PIN ... Pass 6 succ 0 fail 0.7 secs

Test TWC Add1 Hang321 ... Pass 3 succ 0 fail 0.9 secs

Test TWC Add2 Hang123 ... Pass 6 succ 0 fail 1.0 secs

Test TWC Add1 Hang3 Ring2 ... Pass 3 succ 0 fail 0.9 secs

Test TWC Add1 Hang31 Ring2 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add1 Busy3 Hang21 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 Busy3 End2 Hang31 ... Pass 6 succ 0 fail 0.9 secs

43

Test TWC Add2 Hang312 ... Pass 6 succ 0 fail 1.0 secs

Test TWC Add2 End2 Hang312 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 End2 Hang231 ... Pass 3 succ 0 fail 0.9 secs

Test TWC Add2 End2 Hang123 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 Hang1 Hang32 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 Hang2 Ring2 Hang12 ...Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 Hang2 Ring2 Hang1 ... Pass 3 succ 0 fail 0.9 secs

Test TWC End2 Hang12 ... Pass 6 succ 0 fail 0.7 secs

Test TWC Add2 Hang12 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Hang1 Add2 Hang32 ... Pass 6 succ 0 fail 1.1 secs

Test TWC Hang2 Ring2 Hang1 ... Pass 3 succ 0 fail 0.8 secs

Test TWC Add2 Hang21 ... Pass 6 succ 0 fail 1.1 secs

Test TWC Add2 Hang132 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 End2 Hang31 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add1 Hang3 End1 Hang12 ... Pass 6 succ 0 fail 0.9 secs

Test TWC Add2 Hang2 Ring2 Hang21 ...Pass 3 succ 0 fail 0.9 secs

Test TWC Add1 Hang1 Ring1 Hang2 ... Pass 3 succ 0 fail 0.8 secs

Test CC No Account ... Pass 3 succ 0 fail 0.6 secs

Test CC No PIN ... Pass 3 succ 0 fail 0.6 secs

Test CC Wrong Account ... Pass 3 succ 0 fail 0.6 secs

Test CC Wrong PIN ... Pass 3 succ 0 fail 0.6 secs

Test CC Right PIN ... Pass 6 succ 0 fail 0.7 secs

Test RC Call Back ... Pass 10 succ 0 fail 0.9 secs

Test RC No Caller ... Pass 3 succ 0 fail 0.6 secs

Test CND Display ... Pass 6 succ 0 fail 0.7 secs

Test CND No Display ... Pass 6 succ 0 fail 0.7 secs

Test INFB Forward ... Pass 6 succ 0 fail 0.7 secs

Test INFB No Forward ... Pass 6 succ 0 fail 0.7 secs

Test INFR Early ... Pass 6 succ 0 fail 0.7 secs

Test INFR Any Forward ... Pass 9 succ 0 fail 0.9 secs

Test INFR No Forward ... Pass 6 succ 0 fail 0.7 secs

Test INFR Not Caller ... Pass 6 succ 0 fail 0.9 secs

Test INFR Caller Forward ... Pass 9 succ 0 fail 0.9 secs

Test INCF Forward ... Pass 9 succ 0 fail 0.8 secs

Test INCF No Forward ... Pass 6 succ 0 fail 0.8 secs

Test CFBL Busy Forward ... Pass 23 succ 0 fail 1.3 secs

Test CFBL No Forward ... Pass 11 succ 0 fail 0.7 secs

Test CFBL Free ... Pass 6 succ 0 fail 0.8 secs

Test TCS Reject ... Pass 3 succ 0 fail 0.7 secs

Test TCS No Reject ... Pass 6 succ 0 fail 1.0 secs

Test TCS No Screen ... Pass 6 succ 0 fail 0.8 secs

SDL Validation: performed using Mustard on a 3.8GHz/1Gb Pentium with Windows XP, CygWin

1.5.24-2, Mustard 1.3 and Tau 4.6.

SDL validation of POTS and its features using the generated SDL specification:
Test POTS Clear Before Dial ... Pass 1 succ 0 fail 0.0 secs

Test POTS Clear Before Answer ... Pass 1 succ 0 fail 0.1 secs

Test POTS Caller Clear ... Pass 1 succ 0 fail 0.1 secs

Test POTS Callee Clear ... Pass 1 succ 0 fail 0.1 secs

Test POTS Call Self ... Pass 1 succ 0 fail 0.0 secs

Test POTS Call Busy ... Pass 1 succ 0 fail 0.1 secs

Test POTS Simultaneous Call ... Pass 1 succ 0 fail 0.0 secs

Test INTL No Teen Line ... Pass 1 succ 0 fail 0.1 secs

Test INTL Early ... Pass 1 succ 0 fail 0.0 secs

Test INTL No PIN ... Pass 1 succ 0 fail 0.1 secs

Test INTL Wrong PIN ... Pass 1 succ 0 fail 0.0 secs

Test INTL Right PIN ... Pass 1 succ 0 fail 0.0 secs

Test TWC Add1 Hang321 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang123 ... Pass 1 succ 0 fail 0.0 secs

Test TWC Add1 Hang3 Ring2 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add1 Hang31 Ring2 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add1 Busy3 Hang21 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Busy3 End2 Hang31 ... Pass 1 succ 0 fail 0.0 secs

Test TWC Add2 Hang312 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 End2 Hang312 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 End2 Hang231 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 End2 Hang123 ... Pass 1 succ 0 fail 0.0 secs

http://www.cs.stir.ac.uk/~kjt/research/mustard.html

44

Test TWC Add2 Hang1 Hang32 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang2 Ring2 Hang12 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang2 Ring2 Hang1 ... Pass 1 succ 0 fail 0.1 secs

Test TWC End2 Hang12 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang12 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Hang1 Add2 Hang32 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Hang2 Ring2 Hang1 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang21 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang132 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 End2 Hang31 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add1 Hang3 End1 Hang12 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add2 Hang2 Ring2 Hang21 ... Pass 1 succ 0 fail 0.1 secs

Test TWC Add1 Hang1 Ring1 Hang2 ... Pass 1 succ 0 fail 0.0 secs

Test CC No Account ... Pass 1 succ 0 fail 0.1 secs

Test CC No PIN ... Pass 1 succ 0 fail 0.0 secs

Test CC Wrong Account ... Pass 1 succ 0 fail 0.1 secs

Test CC Wrong PIN ... Pass 1 succ 0 fail 0.0 secs

Test CC Right PIN ... Pass 1 succ 0 fail 0.1 secs

Test RC Call Back ... Pass 1 succ 0 fail 0.1 secs

Test RC No Caller ... Pass 1 succ 0 fail 0.1 secs

Test CND Display ... Pass 1 succ 0 fail 0.0 secs

Test CND No Display ... Pass 1 succ 0 fail 0.1 secs

Test INFB Forward ... Pass 1 succ 0 fail 0.1 secs

Test INFB No Forward ... Pass 1 succ 0 fail 0.0 secs

Test INFR Early ... Pass 1 succ 0 fail 0.0 secs

Test INFR Any Forward ... Pass 1 succ 0 fail 0.0 secs

Test INFR No Forward ... Pass 1 succ 0 fail 0.0 secs

Test INFR Not Caller ... Pass 1 succ 0 fail 0.1 secs

Test INFR Caller Forward ... Pass 1 succ 0 fail 0.0 secs

Test INCF Forward ... Pass 1 succ 0 fail 0.0 secs

Test INCF No Forward ... Pass 1 succ 0 fail 0.0 secs

Test CFBL Busy Forward ... Pass 1 succ 0 fail 0.1 secs

Test CFBL No Forward ... Pass 1 succ 0 fail 0.1 secs

Test CFBL Free ... Pass 1 succ 0 fail 0.0 secs

Test TCS Reject ... Pass 1 succ 0 fail 0.0 secs

Test TCS No Reject ... Pass 1 succ 0 fail 0.1 secs

Test TCS No Screen ... Pass 1 succ 0 fail 0.0 secs

17. IVR (Interactive Voice Response)

Interactive Voice Response supports a speech interface that allows the user to make spoken enquiries

and receive spoken responses. IVR services are normally referred to as applications. Although IVR

has the concept of sub-dialogue, it does not have the telephony concept of feature.

17.1 Configuration Diagram

The configuration diagram starts with a Deploys line (see section 4). No further configuration lines

are required.

17.2 Services/Features

Some IVR features are general-purpose and could be used with many services, while others are

service-specific.

Feature Purpose

ACCOUNT
bank account number (general-purpose feature, used with BOOKING and

DONATION)

BOOKING hotel booking (root)

CONFIRM
confirm submission (general-purpose feature, used with BOOKING,

DONATION and ORDER)

CONTACT contact telephone number (feature, used with BOOKING)

45

Feature Purpose

CUSTOMER customer number (feature, used with ORDER)

DEAF
no user barge-in (general-purpose feature, used with BOOKING,

DONATION and ORDER)

GLUCOSE
blood sugar checking (root), based on original work by Brian O’Neill

(Brain Injury Rehabilitation Trust)

HANDWASH
hand washing (root), based on original work by Alex Mihailidis (University

of Toronto)

INTRODUCTION
introduction (general-purpose feature, used with BOOKING, DONATION

and ORDER)

LIMB
limb donning (root), based on original work by Alex Gillespie (University

of Stirling) and Brian O’Neill (Brain Injury Rehabilitation Trust)

PIN
personal identification number (general-purpose feature, used with

BOOKING and ORDER)

RESTART re-start (feature, used with DONATION)

SMOOTHIE
making a strawberry smoothie (root), based on original work by Alex

Gillespie (University of Stirling)

WAIT
no prompt time-out (general-purpose feature, used with BOOKING,

DONATION and ORDER)

17.3 Signals

Signal Parameters

Application to Recogniser

Menu (1) String,String,[DTMF]

Option Variable,String,String,[Boolean]

Query String

Request Variable,String,Grammar,[Boolean]

Application to Server

Data URI,String

Application to User

Audio String

Recogniser to Application

Failed Event

Failed Value

Recogniser to User

Audio String

User to Recogniser

Event Event

Tone DTMF

Voice Speech

1. Not yet (fully) implemented

17.4 Actions

Action Parameters

46

Action Parameters

Clear String

Data (1) URI,String

Exit -

Prompt String,[Boolean]

Reprompt -

Retry -

Throw String

1. Not yet (fully) implemented as VoiceXML support is limited. The Cress interpretation of this

is as one-way to the server, whereas VoiceXML expects one-way from or two-way to/from

the server.

17.5 Events

Event Parameters

Cancel [Count,[Boolean]]

Catch String,[Count,[Boolean]]

Error [Count,[Boolean]]

Exit [Count,[Boolean]]

Filled -

Help [Count,[Boolean]]

NoInput [Count,[Boolean]]

NoMatch [Count,[Boolean]]

17.6 Variable Interpolation

A variable $Variable in text is replaced by its value except in the following cases:

Variable Meaning

$Class(text) string equivalent of text

$Emp(text) string equivalent of text

$Enumerate list of current options

$Sub(text1,text2) string equivalent of text2

17.7 Platform Variables

Variable Parameters

bargein Boolean (default false)

timeout Integer (default 0)

vxevent Event

vxfield Integer (initially 0)

vxoptions Strings (initially " '' ")

vxprompt Strings (initially "")

17.8 Variable Types

Variable names of the form ‘query’ followed by digits are reserved (being automatically generated by

the Query activity).

47

Variable

Value

17.9 Specification Validation

Lotos Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Lola 3.7.2 and Mustard 1.8.

Validation of BOOKING and its features using the generated Lotos specification:
Test BOOKING Normal ... Pass 1 succ 0 fail 1.7 secs

Test BOOKING Errors ... Pass 1 succ 0 fail 0.6 secs

Test INTRODUCTION Exit ... Pass 1 succ 0 fail 0.5 secs

Test INTRODUCTION Incorrect ... Pass 1 succ 0 fail 0.6 secs

Test INTRODUCTION Retry Limit ... Pass 1 succ 0 fail 0.5 secs

Test ACCOUNT Correct ... Pass 1 succ 0 fail 0.6 secs

Test ACCOUNT Incorrect ... Pass 1 succ 0 fail 0.6 secs

Test CONTACT Correct ... Pass 1 succ 0 fail 0.6 secs

Test CONTACT Incorrect ... Pass 1 succ 0 fail 0.6 secs

Test CONFIRM Correct ... Pass 1 succ 0 fail 0.6 secs

Test CONFIRM Incorrect ... Pass 1 succ 0 fail 0.6 secs

Test CONFIRM Retry ... Pass 1 succ 0 fail 0.6 secs

Validation of DONATION and its features using the generated Lotos specification:
Test DONATION Normal ... Pass 1 succ 0 fail 1.6 secs

Test DONATION Errors ... Pass 1 succ 0 fail 0.6 secs

Test INTRODUCTION Exit ... Pass 1 succ 0 fail 0.6 secs

Test INTRODUCTION Incorrect ... Pass 1 succ 0 fail 0.5 secs

Test INTRODUCTION Retry Limit ... Pass 1 succ 0 fail 0.5 secs

Test ACCOUNT Correct ... Pass 1 succ 0 fail 0.5 secs

Test ACCOUNT Incorrect ... Pass 1 succ 0 fail 0.5 secs

Test PIN Correct ... Pass 1 succ 0 fail 0.5 secs

Test PIN Incorrect ... Pass 1 succ 0 fail 0.6 secs

Test CONFIRM Correct ... Pass 1 succ 0 fail 0.5 secs

Test CONFIRM Incorrect ... Pass 1 succ 0 fail 0.5 secs

Test CONFIRM Retry ... Pass 1 succ 0 fail 0.6 secs

Validation of GLUCOSE using the generated Lotos specification:
Test GLUCOSE No Problems ... Pass 1 succ 0 fail 6.0 secs

Test GLUCOSE Help Needed ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE Find Lance ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE Find Glucose Tester ...Pass 1 succ 0 fail 2.6 secs

Test GLUCOSE Find Strips ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Find Wipe ... Pass 1 succ 0 fail 2.6 secs

Test GLUCOSE Find Sharps Box ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Hands Not Wiped ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Strip Not Found ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Strip Not Inserted ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE No Strip Number ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Number Match ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Lance Click ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Yellow Line ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Button Push ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Blood ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Blood Sample ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE Finger Bleeding ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE High Glucose ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Medium Glucose ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE Low Glucose Unfixed ...Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE Low Glucose Fixed ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE Lance Not Out ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE No Lance Disposal ... Pass 1 succ 0 fail 2.4 secs

Test GLUCOSE New Lance Fitted ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Old Strip Removal ... Pass 1 succ 0 fail 2.5 secs

Test GLUCOSE Old Strip Disposal ... Pass 1 succ 0 fail 2.4 secs

Validation of HANDWASH using the generated Lotos specification:

48

Test HANDWASH No Problems ... Pass 1 succ 0 fail 1.7 secs

Test HANDWASH Help Needed ... Pass 1 succ 0 fail 0.6 secs

Test HANDWASH Turn On Water ... Pass 1 succ 0 fail 0.6 secs

Test HANDWASH Use Soap ... Pass 1 succ 0 fail 0.6 secs

Test HANDWASH Do Rinse ... Pass 1 succ 0 fail 0.6 secs

Test HANDWASH Turn Off Water ... Pass 1 succ 0 fail 0.6 secs

Test HANDWASH Dry Hands ... Pass 1 succ 0 fail 0.6 secs

Validation of LIMB using the generated Lotos specification:
Test LIMB No Problems ... Pass 1 succ 0 fail 4.8 secs

Test LIMB Help Needed ... Pass 1 succ 0 fail 1.8 secs

Test LIMB Find Limb ... Pass 1 succ 0 fail 1.8 secs

Test LIMB Find Liner ... Pass 1 succ 0 fail 2.0 secs

Test LIMB Find Socks ... Pass 1 succ 0 fail 2.0 secs

Test LIMB Apply Brakes ... Pass 1 succ 0 fail 2.0 secs

Test LIMB Remove Boards ... Pass 1 succ 0 fail 2.0 secs

Test LIMB Remove Footplates ... Pass 1 succ 0 fail 2.4 secs

Test LIMB Remove Obstacle ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Remove Shrinker Sock ... Pass 1 succ 0 fail 2.3 secs

Test LIMB Wear Thick Sock ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Smooth Thick Sock ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Wear Thin Sock ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Smooth Thin Sock ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Blocked Liner ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Tight Liner ... Pass 1 succ 0 fail 2.5 secs

Test LIMB Reversed Liner ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Old Liner ... Pass 1 succ 0 fail 2.1 secs

Test LIMB Pull Sock Up ... Pass 1 succ 0 fail 2.3 secs

Test LIMB Wear Extra Sock ... Pass 1 succ 0 fail 2.0 secs

Test LIMB Put Leg On ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Check Fit ... Pass 1 succ 0 fail 1.9 secs

Test LIMB Pull Up Sleeve ... Pass 1 succ 0 fail 1.9 secs

Test LIMB All Problems ... Pass 1 succ 0 fail 2.8 secs

Validation of ORDER and its features using the generated Lotos specification:
Test ORDER Normal ... Pass 1 succ 0 fail 1.8 secs

Test ORDER Errors ... Pass 1 succ 0 fail 0.7 secs

Test INTRODUCTION Exit ... Pass 1 succ 0 fail 0.8 secs

Test INTRODUCTION Incorrect ... Pass 1 succ 0 fail 0.8 secs

Test INTRODUCTION Retry Limit ... Pass 1 succ 0 fail 0.6 secs

Test CUSTOMER Correct ... Pass 1 succ 0 fail 0.7 secs

Test CUSTOMER Incorrect ... Pass 1 succ 0 fail 0.7 secs

Test PIN Correct ... Pass 1 succ 0 fail 0.5 secs

Test PIN Incorrect ... Pass 1 succ 0 fail 0.6 secs

Test CONFIRM Correct ... Pass 1 succ 0 fail 0.5 secs

Test CONFIRM Incorrect ... Pass 1 succ 0 fail 0.5 secs

Test CONFIRM Retry ... Pass 1 succ 0 fail 0.5 secs

Validation of SMOOTHIE using the generated Lotos specification:
Test SMOOTHIE No Problems ... Pass 1 succ 0 fail 4.5 secs

Test SMOOTHIE Help Needed ... Pass 1 succ 0 fail 1.7 secs

Test SMOOTHIE All Problems ... Pass 1 succ 0 fail 1.8 secs

SDL Validation: performed using Mustard on a 3.8GHz/1Gb Pentium with Windows XP, CygWin

1.5.24-2, Mustard 1.3 and Tau 4.6.

Validation of BOOKING and its features using the generated SDL specification:
Test BOOKING Normal ... Pass 1 succ 0 fail 0.0 secs

Test BOOKING Errors ... Pass 1 succ 0 fail 0.1 secs

Test INTRODUCTION Exit ... Pass 1 succ 0 fail 0.0 secs

Test INTRODUCTION Incorrect ... Pass 1 succ 0 fail 0.0 secs

Test INTRODUCTION Retry Limit ... Pass 1 succ 0 fail 0.0 secs

Test ACCOUNT Correct ... Pass 1 succ 0 fail 0.0 secs

Test ACCOUNT Incorrect ... Pass 3 succ 0 fail 0.0 secs

Test CONTACT Correct ... Pass 1 succ 0 fail 0.1 secs

Test CONTACT Incorrect ... Pass 3 succ 0 fail 0.1 secs

Test CONFIRM Correct ... Pass 1 succ 0 fail 0.1 secs

http://www.cs.stir.ac.uk/~kjt/research/mustard.html

49

Test CONFIRM Incorrect ... Pass 3 succ 0 fail 0.1 secs

Test CONFIRM Retry ... Pass 1 succ 0 fail 0.1 secs

Validation of DONATION and its features using the generated SDL specification:
Test DONATION Normal ... Pass 1 succ 0 fail 0.1 secs

Test DONATION Errors ... Pass 1 succ 0 fail 0.0 secs

Test INTRODUCTION Exit ... Pass 1 succ 0 fail 0.1 secs

Test INTRODUCTION Incorrect ... Pass 1 succ 0 fail 0.1 secs

Test INTRODUCTION Retry Limit ... Pass 1 succ 0 fail 0.1 secs

Test ACCOUNT Correct ... Pass 1 succ 0 fail 0.1 secs

Test ACCOUNT Incorrect ... Pass 3 succ 0 fail 0.1 secs

Test PIN Correct ... Pass 1 succ 0 fail 0.1 secs

Test PIN Incorrect ... Pass 3 succ 0 fail 0.1 secs

Test CONFIRM Correct ... Pass 1 succ 0 fail 0.1 secs

Test CONFIRM Incorrect ... Pass 3 succ 0 fail 0.1 secs

Test CONFIRM Retry ... Pass 1 succ 0 fail 0.1 secs

Validation of ORDER and its features using the generated SDL specification:
Test ORDER Normal ... Pass 1 succ 0 fail 0.0 secs

Test ORDER Errors ... Pass 1 succ 0 fail 0.0 secs

Test INTRODUCTION Exit ... Pass 1 succ 0 fail 0.1 secs

Test INTRODUCTION Incorrect ... Pass 1 succ 0 fail 0.1 secs

Test INTRODUCTION Retry Limit ... Pass 1 succ 0 fail 0.0 secs

Test CUSTOMER Correct ... Pass 1 succ 0 fail 0.0 secs

Test CUSTOMER Incorrect ... Pass 3 succ 0 fail 0.0 secs

Test PIN Correct ... Pass 1 succ 0 fail 0.0 secs

Test PIN Incorrect ... Pass 3 succ 0 fail 0.0 secs

Test CONFIRM Correct ... Pass 1 succ 0 fail 0.1 secs

Test CONFIRM Incorrect ... Pass 3 succ 0 fail 0.1 secs

Test CONFIRM Retry ... Pass 1 succ 0 fail 0.0 secs

17.10 Specification Verification

Lotos Verification: performed using CADP 2009-c on a 2.67GHz i920 processor, 4Gb memory,

Windows XP, CygWin 1.7.7-1 and Clove 1.3.

Verification of GLUCOSE using the annotated Lotos specification and options ‘-d -x -r taucomp’:
Generating properties for GLUCOSE ... CPU Time (Real Time)

Generating graph for GLUCOSE ... 23.7 secs (4.5 mins)

 (states/transitions/labels: 2226/12417/102 -> 141/712/102)

Verifying GLUCOSE Can Finish ... Success 6.4 secs (7.0 secs)

Verifying GLUCOSE May Not Finish ... Success 6.5 secs (7.0 secs)

Verifying GLUCOSE Finish Or Help ... Success 6.3 secs (7.0 secs)

Verifying GLUCOSE Numbers Agree ... Success 6.3 secs (14.0 secs)

Verifying GLUCOSE Livelock Freedom ... Success 6.4 secs (9.0 secs)

Verifying GLUCOSE Initials Safety ... Success 6.3 secs (7.0 secs)

Verifying GLUCOSE Always Exit ... Success 6.4 secs (8.0 secs)

Verification of HANDWASH using the annotated Lotos specification and options ‘-d -x -r taucomp’:
Generating properties for HANDWASH ... CPU Time (Real Time)

Generating graph for HANDWASH ... 22.7 secs (2.3 mins)

 (states/transitions/labels: 753/4210/45 -> 48/229/45)

Verifying HANDWASH Can Finish ... Success 6.3 secs (7.0 secs)

Verifying HANDWASH May Not Finish ... Success 6.3 secs (7.0 secs)

Verifying HANDWASH Finish Or Help ... Success 6.3 secs (7.0 secs)

Verifying HANDWASH Hands Rinsed ... Success 6.4 secs (12.0 secs)

Verifying HANDWASH Livelock Freedom ... Success 6.3 secs (9.0 secs)

Verifying HANDWASH Initials Safety ... Success 6.4 secs (7.0 secs)

Verifying HANDWASH Always Exit ... Success 6.3 secs (7.0 secs)

Verification of LIMB using the annotated Lotos specification and options ‘-d -x -r taucomp’:
Generating properties for LIMB ... CPU Time (Real Time)

Generating graph for LIMB ... 24.5 secs (10.0 mins)

 (states/transitions/labels: 4595/26252/106 -> 176/1111/106)

Verifying LIMB Can Finish ... Success 6.5 secs (7.0 secs)

Verifying LIMB May Not Finish ... Success 6.6 secs (7.0 secs)

Verifying LIMB Finish Or Help ... Success 6.4 secs (7.0 secs)

50

Verifying LIMB Boards Removed ... Success 6.3 secs (13.0 secs)

Verifying LIMB Livelock Freedom ... Success 6.4 secs (10.0 secs)

Verifying LIMB Initials Safety ... Success 6.6 secs (7.0 secs)

Verifying LIMB Always Exit ... Success 6.4 secs (7.0 secs)

Verification of SMOOTHIE using the annotated Lotos specification and options ‘-d -x -r taucomp’:
Generating properties for SMOOTHIE ... CPU Time (Real Time)

Generating graph for SMOOTHIE ... 26.2 secs (13.6 mins)

 (states/transitions/labels: 6853/39066/173 -> 286/1819/173)

Verifying SMOOTHIE Can Finish ... Success 6.4 secs (7.0 secs)

Verifying SMOOTHIE May Not Finish ... Success 6.2 secs (7.0 secs)

Verifying SMOOTHIE Finish Or Help ... Success 6.4 secs (8.0 secs)

Verifying SMOOTHIE Contents Blended ... Success 6.4 secs (19.0 secs)

Verifying SMOOTHIE Livelock Freedom ... Success 6.5 secs (10.0 secs)

Verifying SMOOTHIE Initials Safety ... Success 6.4 secs (7.0 secs)

Verifying SMOOTHIE Always Exit ... Success 6.5 secs (7.0 secs)

18. SIP (Session Initiation Protocol)

The Session Initiation Protocol is typically used to support Internet Telephony, though it is really a

general-purpose signalling protocol. SIP features are typically implemented in a user agent, proxy

server or redirect server using CPL (Call Processing Language) or CGI-BIN (Common Gateway

Interface – Binary).

18.1 Configuration Diagram

The configuration diagram starts with a Deploys line and then a blank line (see section 4).

Feature configuration lines are then per subscriber and have the same form as for IN (see section

16.1).

18.2 Services/Features

Only a limited range of features is currently defined, patterned after those used with Intelligent

Networks. Features vary according to where they are deployed.

Feature Purpose

AGENT User Agent (root)

AGENT CFBL User Agent Call Forward Busy Line (feature)

AGENT TCS User Agent Terminating Call Screening (feature)

PROXY Proxy Server (root)

PROXY CFBL Proxy Server Call Forward Busy Line (feature)

PROXY TCS Proxy Server Terminating Call Screening (feature)

REDIRECT Redirect Server (root)

18.3 Signals

Signal Parameters

Agent to Billing

AirBegin Address,Time

AirEnd Address,Time

LogBegin Address,Address,Address,Time

LogEnd Address,Address,Time

Agent to Protocol, Protocol to Agent

Ack Address,Address

51

Signal Parameters

Bye Address,Address

Invite Address,Address

Response Address,Address,Response

Agent to Status Manager

StartBilling Address,Address,Address

StopBilling Address,Address,Address

UpdateAA (1) Status,Address,Address

UpdateAB (1) Status,Address,Boolean

UpdateAL (1) Status,Address,List

UpdateAT (1) Status,Address,Time

UpdateAAA (1) Status,Address,Address,Address

UpdateAAB (1) Status,Address,Address,Boolean

UpdateAAT (1) Status,Address,Address,Time

Agent to User

Announce Address,Message

Disconnect Address,Address

StartRing Address,Address

StopRing Address,Address

User to Agent

Answer Address

Dial Address,Address

OffHook Address

OnHook Address

Reject Address,Message

1. Used in the SDL translation

18.4 Static (Profile) Variables

Variable Parameters Result

BillPIN (1) Address Boolean

CallingNumber (4) Address Boolean

CallWaiting Address Boolean

Cellular Address Boolean

ForwardBusy (2) Address Address

ForwardTo Address Address

Freephone (4) Address Boolean

MovedTo (4) Address Boolean

RedirectAddress Address,Address Address

RedirectTime1 Address,Address Time

RedirectTime2 Address,Address Time

ScreenIn Address Addresses

ScreenOut (3) Address Addresses

TeenPIN Address Address

52

Variable Parameters Result

TeenTime1 Address Time

TeenTime2 Address Time

1. ‘Charge’ in Chisel

2. ‘BLForward’ in Chisel

3. ‘Screened’ in Chisel

4. Not defined in Chisel

18.5 Dynamic (Run-Time) Variables

Variable Parameters Result

Bill (1) Address,Address Address

Busy Address Boolean

By (1) Address,Address Address

LastIncoming Address Address

ReturnCall Address,Address Boolean

1. Not defined in Chisel.

18.6 Announcement Messages

Message

AnyMessage

AskForPIN (1)

BusyHere

Decline

DialTone

EnterPhoneNumber

EnterPIN

InvalidPIN

ScreenedMessage

Success

Terminated

Trying

Unobtainable

1. Accepted as in Chisel, but converted to ‘EnterPIN’

The following functions apply to announcement messages (i.e. response codes):

Function Parameters Result

Moved Message Boolean

MovedTo Message Address

Terminal Message Boolean

18.7 Variable Types

53

Variable

Address

Message

Time

18.8 Specification Validation

Lotos Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Lola 3.7.2 and Mustard 1.8.

Validation of AGENT and its features using the generated Lotos specification:
Test AGENT CFBL Busy Forward ... Pass 222 succ 0 fail 12.4 secs

Test AGENT CFBL No Forward ... Pass 244 succ 0 fail 3.0 secs

Test AGENT CFBL Free ... Pass 57 succ 0 fail 1.5 secs

Test AGENT TCS Reject ... Pass 57 succ 0 fail 1.1 secs

Test AGENT TCS No Reject ... Pass 57 succ 0 fail 1.4 secs

Test AGENT TCS No Screen ... Pass 24 succ 0 fail 1.2 secs

Validation of PROXY and its features using the generated Lotos specification:
Test PROXY Clear Before Dial ... Pass 12 succ 0 fail 1.5 secs

Test PROXY Clear Before Answer ... Pass 24 succ 0 fail 1.0 secs

Test PROXY Caller Clear ... Pass 23 succ 0 fail 1.4 secs

Test PROXY Callee Clear ... Pass 24 succ 0 fail 1.3 secs

Test PROXY Call Self ... Pass 57 succ 0 fail 0.8 secs

Test PROXY Simultaneous Call ... Pass 248 succ 0 fail 1.7 secs

Test PROXY CFBL Busy Forward ... Pass 42 succ 0 fail 4.4 secs

Test PROXY CFBL No Forward ... Pass 249 succ 0 fail 1.6 secs

Test PROXY CFBL Free ... Pass 57 succ 0 fail 1.3 secs

Test PROXY TCS Reject ... Pass 4 succ 0 fail 0.4 secs

Test PROXY TCS No Reject ... Pass 24 succ 0 fail 1.4 secs

Test PROXY TCS No Screen ... Pass 24 succ 0 fail 1.0 secs

Validation of REDIRECT and its features using the generated Lotos specification:
Test REDIRECT Forward ... Pass 24 succ 0 fail 1.7 secs

Test REDIRECT Forward Busy ... Pass 57 succ 0 fail 0.7 secs

SDL Validation: performed using Mustard on a 3.8GHz/1Gb Pentium with Windows XP, CygWin

1.5.24-2, Mustard 1.3 and Tau 4.6.

Validation of AGENT and its features using the generated SDL specification:
Test AGENT CFBL Busy Forward ... Pass 1 succ 0 fail 0.0 secs

Test AGENT CFBL No Forward ... Pass 1 succ 0 fail 0.1 secs

Test AGENT CFBL Free ... Pass 1 succ 0 fail 0.0 secs

Test AGENT TCS Reject ... Pass 1 succ 0 fail 0.1 secs

Test AGENT TCS No Reject ... Pass 1 succ 0 fail 0.1 secs

Test AGENT TCS No Screen ... Pass 1 succ 0 fail 0.0 secs

Validation of PROXY and its features using the generated SDL specification:
Test PROXY Clear Before Dial ... Pass 1 succ 0 fail 0.0 secs

Test PROXY Clear Before Answer ... Pass 1 succ 0 fail 0.1 secs

Test PROXY Caller Clear ... Pass 1 succ 0 fail 0.0 secs

Test PROXY Callee Clear ... Pass 1 succ 0 fail 0.1 secs

Test PROXY Call Self ... Pass 1 succ 0 fail 0.1 secs

Test PROXY Simultaneous Call ... Pass 1 succ 0 fail 0.0 secs

Test PROXY CFBL Busy Forward ... Pass 1 succ 0 fail 0.0 secs

Test PROXY CFBL No Forward ... Pass 1 succ 0 fail 0.1 secs

Test PROXY CFBL Free ... Pass 1 succ 0 fail 0.0 secs

Test PROXY TCS Reject ... Pass 1 succ 0 fail 0.0 secs

Test PROXY TCS No Reject ... Pass 1 succ 0 fail 0.0 secs

Test PROXY TCS No Screen ... Pass 1 succ 0 fail 0.1 secs

Validation of REDIRECT and its features using the generated SDL specification:
Test REDIRECT Forward ... Pass 1 succ 0 fail 0.1 secs

Test REDIRECT Forward Busy ... Pass 1 succ 0 fail 0.0 secs

http://www.cs.stir.ac.uk/~kjt/research/mustard.html

54

19. SS (Statistics Services)

Statistics services resemble web services in allowing application-to-application communication using

web-like mechanisms. Statistics services differ in calling web services that support scripts for a

statistical application such as Stata or R. SS applications usually do not make use of features.

19.1 Configuration Diagram

The configuration diagram starts with a Deploys line and then a blank line (see section 4).

Configuration lines for SS are normally given in short form:
partnerName resource, ...

Service configuration lines are the same as for WS (section 21.1), except that partner services may

optionally finish with a resource declaration. This is a comma-separated list of primitive values

(strings, numbers and booleans) exported by the script (e.g. ‘bhps_analysis.dta, soc90.spss’). Strings

that do not have the form of numbers will be automatically double-quoted, but may be explicitly

double-quoted. Commas must not appear in individual values.

To allow a partner service to generate different files according to its inputs, the output can be

defined in terms of inputs using ‘$n’ for the nth input. If the input is a primitive value, only ‘$1’ can

be used. If the input is a structured value, ‘$n’ denotes the nth field. If the same service can be called

quasi-simultaneously by several users, its outputs can be distinguished by using ‘$$’ (‘-<user>’ for

BPEL, empty for Lotos). If the selected input is a string, its base value is used (since it will be the

name of a file). The base file name has any initial path (ending ‘/’ or ‘\’) removed, and the remainder

of the text is taken up to the earlier of ‘-’ and ‘.’ (thereby removing an instance suffix or file

extension). Suppose the input for a script is a structured value:
{ input/bhps1995-health.dta, /tmp/work/shs1995.sav }

The resource description ‘result/$1-$2$$.dta’ will then correspond to a file such as:
result/bhps1995-shs1995-kjt@cs.stir.ac.uk.dta

Internally, file names used by scripts have absolute paths when handled by BPEL. This allows a

file name to be passed to a script in the same workflow or to another workflow. When a workflow

returns a file, its name is made relative to the workflow directory and the ‘$$’ suffix is removed. The

result above would thus be returned as:
result/bhps1995-shs1995.dta

19.2 Services/Features

Feature Purpose

MERGER match-merge two files on two pairs of variables

19.3 Signals

These are the same as for WS (section 21.3). The port name distinguishes the statistics package to be

used: stata (Stata), statr (R), stats (S). If fault(s) are not explicitly provided for a script invocation, an

implicit fault <partner>Error.reason is assumed. This requires the string parameter reason to be

defined in the workflow.

19.4 Actions

These are the same as for WS (section 21.4).

19.5 Events

These are the same as for WS (section 21.5).

19.6 Dynamic (Run-Time) Variables

These are the same as for WS (section 21.6).

55

19.7 Variable Types

These are the same as for WS (section 21.6).

19.8 Specification Validation

Lotos Validation: performed using Mustard on a 3.4GHz i7-3880 processor, 16Gb memory,

Windows 7 Enterprise, CygWin 1.7.16-1, Lola 3.7.2 and Mustard 2.0.

Validation of BHPS3 using the generated Lotos specification:
Test BHPS3 BHPS91 BHPS03 ... Pass 1 succ 0 fail 12.9 secs

Validation of BHPS_SHS using the generated Lotos specification:
Test BHPS SHS BHPS95 SHS95 ... Pass 1 succ 0 fail 2.6 secs

Validation of JOB_HEALTH using the generated Lotos specification:
Test JOB HEALTH BHPS95 BHPS95 ... Pass 1 succ 0 fail 1.0 secs

Test JOB HEALTH SHS95 SHS95 ... Pass 1 succ 0 fail 0.4 secs

Validation of MERGER using the generated Lotos specification:
Test MERGER AJBSOC SOC90 ... Pass 1 succ 0 fail 0.8 secs

Validation of MERGER2 using the generated Lotos specification:
Test MERGER2 AJBSOC SOC90 ... Pass 1 succ 0 fail 1.0 secs.

19.9 Specification Verification

Lotos Verification: performed using CADP 2011-b on a 3.4GHz i7-3880 processor, 16Gb memory,

Windows 7 Enterprise, CygWin 1.7.16-1 and Clove 1.4.

Verification of BHPS3 (and implicitly its partners) using the annotated Lotos specification:
Generating properties for BHPS3 ... CPU Time (Real Time)

Generating graph for BHPS3 ... 2.8 secs (44.0 secs)

 (states/transitions/labels: 413/1160/3 -> 43/43/3)

Verifying BHPS3 Deadlock Freedom ... Success 1.5 secs (4.0 secs)

Verifying BHPS3 Livelock Freedom ... Success 1.5 secs (5.0 secs)

Verifying BHPS3 Initials Safety ... Success 1.5 secs (4.0 secs)

Verification of BHPS_SHS (and implicitly its partners) using the annotated Lotos specification:
Generating properties for BHPS_SHS ... CPU Time (Real Time)

Generating graph for BHPS_SHS ... 2.9 secs (42.0 secs)

 (states/transitions/labels: 78/226/3 -> 31/31/3)

Verifying BHPS Shs Deadlock Freedom ... Success 1.5 secs (4.0 secs)

Verifying BHPS Shs Livelock Freedom ... Success 1.5 secs (5.0 secs)

Verifying BHPS Shs Initials Safety ... Success 1.6 secs (4.0 secs)

Verification of JOB_HEALTH (and implicitly its partners) using the annotated Lotos specification:
Generating properties for JOB_HEALTH ... CPU Time (Real Time)

Generating graph for JOB_HEALTH ... 2.8 secs (35.0 secs)

 (states/transitions/labels: 18954/56889/2116 -> 91/2196/2116)

Verifying JOB Health Deadlock Freedom ... Success 1.5 secs (3.0 secs)

Verifying JOB Health Livelock Freedom ... Success 1.5 secs (4.0 secs)

Verifying JOB Health Initials Safety ... Success 1.5 secs (3.0 secs)

Verification of MERGER (and implicitly its partners) using the annotated Lotos specification:
Generating properties for MERGER ... CPU Time (Real Time)

Generating graph for MERGER ... 2.7 secs (26.0 secs)

 (states/transitions/labels: 6561/19686/731 -> 11/739/731)

Verifying MERGER Deadlock Freedom ... Success 1.5 secs (2.0 secs)

Verifying MERGER Livelock Freedom ... Success 1.5 secs (4.0 secs)

Verifying MERGER Initials Safety ... Success 1.5 secs (3.0 secs)

Verification of MERGER2 (and implicitly its partners) using the annotated Lotos specification:
Generating properties for MERGER2 ... CPU Time (Real Time)

56

Generating graph for MERGER2 ... 2.7 secs (25.0 secs)

 (states/transitions/labels: 6561/19686/731 -> 11/739/731)

Verifying MERGER2 Deadlock Freedom ... Success 1.4 secs (3.0 secs)

Verifying MERGER2 Livelock Freedom ... Success 1.5 secs (4.0 secs)

Verifying MERGER2 Initials Safety ... Success 1.6 secs (3.0 secs)

19.10 Implementation Validation

BPEL Validation: performed using Mustard on a 3.4GHz i7-3880 processor, 16Gb memory,

Windows 7 Enterprise, CygWin 1.7.16-1, Mint 1.3 and Mustard 2.0.

Validation of BHPS3 using the generated Bpel implementation:
Test BHPS3 BHPS91 BHPS03 ... Pass 1 succ 0 fail 3.4 secs

Validation of BHPS_SHS using the generated Bpel implementation:
Test BHPS SHS BHPS95 SHS95 ... Pass 1 succ 0 fail 3.2 secs

Validation of JOB_HEALTH using the generated Bpel implementation:
Test JOB HEALTH BHPS95 BHPS95 ... Pass 1 succ 0 fail 1.5 secs

Test JOB HEALTH SHS95 SHS95 ... Pass 1 succ 0 fail 1.5 secs

Validation of MERGER using the generated Bpel implementation:
Test MERGER AJBSOC SOC90 ... Pass 1 succ 0 fail 2.2 secs

Validation of MERGER2 using the generated Bpel implementation:
Test MERGER2 AJBSOC SOC90 ... Pass 1 succ 0 fail 2.4 secs

20. VoIP (Voice over Internet Protocol)

Voice over Internet Protocol refers to use of CPL, to distinguish it from the SIP domain. This allows a

user to define a single call-handling service that is executed by a SIP server when calls are made or

received. VoIP support is due to Dean McMenemy (University of Stirling). As this was a student

project, the code is not as thoroughly tested or complete as the other applications domains developed

by the author.

20.1 Configuration Diagram

The configuration diagram starts with a Deploys line (see section 4). No further configuration lines

are required.

20.2 Services/Features

A SIP user is allowed only one CPL script, so only one service at a time is deployed. There are

currently no features defined for VoIP. The following services are based on the examples given in the

CPL standard (RFC 3880).

Service Purpose

AGENT_CHECK

presuming the ‘DodgySIP’ package is not compatible with the

"telephony.com" network, a call to Alice on this network is removed

from the list of destinations.

FORWARD_ALWAYS calls are always forwarded to a friend

FORWARD_LOOKUP forward to the location returned by registration lookup

FORWARD_SUBJECT

calls about academic discounts are rejected, those about sales are

forwarded to the sales address, and all others are sent to an

information address

FORWARD_VOICEMAIL forward to voicemail on busy or no answer

57

PRIORITY_LANGUAGE
non-urgent calls are forwarded to a Spanish or English speaking

operator as appropriate

REJECT_BUSY reject calls from Bob as being busy

REJECT_OFFLINE
while the system is offline, mail the administrator of outgoing call

attempts and inform the user

REJECT_SUNDAY reject calls on Sunday from 1st Jan 2007

SCREEN_PREMIUM reject premium rate calls to 0870 numbers

20.3 Actions

Action Parameters

Location

 lookup [source] URL, followed by guard expressions of the form busy|default|

failure|noanswer|notfound|not-present|otherwise|redirection|success

 remove URL, followed by guard expressions of the form busy|default|

failure|noanswer|notfound|not-present|otherwise|redirection|success

 URL, followed by guard expressions of the form busy|default|

failure|noanswer|notfound|not-present|otherwise|redirection|success

Log name comment

Mail email subject body

Proxy

 nothing

 ordering first-only|parallel|sequential

 recurse no|yes

 timeout

Redirect
 nothing

 URL

Reject status reason

Switch

 address destination|origin|original-destination address-type|display|host|port|tel|user,

followed by guard expressions of the form =|<|~ address or else

 language, followed by guard expressions of the form =|<|~ language or else

 priority =|eq|equal|>|gt|great|<|lt|less priority, followed by guard expressions such as

else

 string display|organization|subject|user-agent, followed by guard expressions of the

form =|<|~ string or else

 time zone [URL], followed by guard expressions of the form

byday|byhour|byminute|bymonth|bymonthday|bysecond|bysetpos|byweekno

|byyearday|count|dtstart|dtend|duration|freq|interval|time|until|wkst = value

20.4 Guards

Guard Parameters

=
address, language,

string

<
address, language,

string

~
address, language,

string

busy, default, failure, noanswer, notfound, not-present, otherwise, redirection,

success
-

byday, byhour, byminute, bymonth, bymonthday, bysecond, bysetpos,

byweekno, byyearday, count, dtstart, dtend, duration, freq, interval, time, until,
time

58

wkst

else -

21. WS (Web Services)

Web services allow application-to-application communication using web-like mechanisms. WS

applications usually do not make use of features.

21.1 Configuration Diagram

The configuration diagram starts with a Deploys line and then a blank line (see section 4).

In general, service configuration lines have the following form:
partnerName namespacePrefix namespaceURI serviceURI

for example:
APPROVER appr urn:FirstRate localhost:8080/active-bpel

This gives the partner name, XML namespace prefix, XML namespace URI (normally a URN),

and the base URI where the service is deployed. In conformity with Axis conventions,

‘/services/service_name’ is automatically added to the URI.

For convenience, a configuration line can be given in short form with just the partner name. This

implies namespace prefix partner, namespace URI urn:partner and URI localhost:8080/active-bpel.

If a service is to be accessed securely (using HTTPS and basic authentication), the service URI

needs authentication information in the form user:password@host e.g.:
user5:sec-ret@example.com/active-bpel

The username here can be an email address such as user5@mail.example.com. The option:
-k user:password@host

can be used with cress_bpel or cress_realise if all services require the same username and password.

If credentials are given, HTTPS is assumed (e.g. https://example.com). If no credentials are given,

HTTP is assumed (e.g. http://example.com). If only the username is given then the password is taken

as empty, e.g.:
user5@example.com/active-bpel

The service URI can optionally have a port number in the form host:port, e.g.:
example.com:8080/active-bpel

21.2 Services/Features

Some WS features are general-purpose and could be used with many services, while others are

service-specific.

Feature Purpose

ADDRESS address validation (general-purpose feature, not fully supported currently)

BROKER car broker (root, making use of BROKER and SUPPLIER)

LENDER loan arranger (root, used by BROKER)

NORMALISE name normalisation (general-purpose feature, not fully supported currently)

SUPPLIER car supplier (root, used by BROKER)

21.3 Signals

Signal Parameters

Partner to Service

Reply QName,[Identifier|Fault]

Service to Partner

Invoke QName,Identifier,[Identifier,Fault*]

59

Signal Parameters

Service to User

Reply QName,[Identifier|Fault]

User to Service

Receive QName,[Identifier]

21.4 Actions

Action Parameters

Compensate [Identifier]

Empty -

Fork [loose|strict]

Join [Expression]

Terminate -

Throw QName

Wait Date [Time] | Time

While Expression

21.5 Events

Event Parameters

Catch QName

CatchAll -

Compensate [Identifier]

Correlation (1) [Identifier]

Timeout Date [Time] | Time

1. Not yet (fully) implemented

21.6 Dynamic (Run-Time) Variables

When translating to BPEL, note that the following variables require use of ActiveBPEL and BPEL

version 2. When translating to Lotos, note that the following variables are only abstractions of real

time.

Variable Result

date String (YYYY-MM-DD)

day Integer

hour Integer

month Integer

second Integer

time String (HH:MM:SS)

weekday Integer (0 = Monday)

year Integer

21.7 Variable Types

60

Note that Natural cannot be mixed with other number types in the same expression. Since a literal

number is translated as a floating point number, this also means that a Natural cannot be mixed with a

literal (e.g. n + 1).

The index of an array may be any kind of number. The whole part of a floating point number is

used when the index is not a Natural. Array accesses may not be nested (e.g. a[b[2]]).

Variable

Boolean

Byte

Date

DateTime

Decimal

Double

Float

Int

Integer

Integer

Long

Natural

NegativeInteger

NonNegativeInteger

NonPositiveInteger

PositiveInteger

Short

String

Time

UnsignedByte

UnsignedInt

UnsignedInt

UnsignedLong

UnsignedShort

Void

21.8 Specification Validation

Lotos Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Lola 3.7.2 and Mustard 1.8.

Validation of BROKER using the generated Lotos specification:
Test BROKER Mondeo Ken ... Pass 1 succ 0 fail 1.6 secs

Test BROKER A5 Scotland ... Pass 1 succ 0 fail 2.4 secs

Test BROKER Megane ... Pass 1 succ 0 fail 1.7 secs

Test BROKER Astra ... Pass 2 succ 0 fail 5.8 secs

Test BROKER XJ6 ... Pass 1 succ 0 fail 0.5 secs

Validation of LENDER and its partners using the generated Lotos specification:
Test APPROVER Low Rate ... Pass 1 succ 0 fail 1.3 secs

Test APPROVER Medium Rate ... Pass 1 succ 0 fail 0.9 secs

Test APPROVER High Rate ... Pass 1 succ 0 fail 4.4 secs

Test APPROVER Loan Unacceptable ... Pass 1 succ 0 fail 1.3 secs

Test ASSESSOR Low Risk ... Pass 1 succ 0 fail 0.4 secs

Test ASSESSOR Medium Risk ... Pass 1 succ 0 fail 0.4 secs

61

Test ASSESSOR High Risk ... Pass 1 succ 0 fail 0.4 secs

Test LENDER Little Low Risk ... Pass 1 succ 0 fail 0.4 secs

Test LENDER Little Medium Risk ... Pass 1 succ 0 fail 0.4 secs

Test LENDER Little High Risk ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Lots Ken ... Pass 1 succ 0 fail 0.4 secs

Test LENDER Lots Scotland ... Pass 1 succ 0 fail 0.7 secs

Test LENDER Lots Under 15000 ... Pass 1 succ 0 fail 0.6 secs

Test LENDER Lots Exceeds 15000 ... Pass 1 succ 0 fail 1.3 secs

Validation of SUPPLIER and its partners using the generated Lotos specification:
Test DEALER1 Mondeo ... Pass 1 succ 0 fail 1.3 secs

Test DEALER1 A5 ... Pass 1 succ 0 fail 0.4 secs

Test DEALER1 Megane ... Pass 1 succ 0 fail 0.4 secs

Test DEALER1 XJ6 ... Pass 1 succ 0 fail 0.4 secs

Test DEALER2 Mondeo ... Pass 1 succ 0 fail 0.4 secs

Test DEALER2 A5 ... Pass 1 succ 0 fail 0.4 secs

Test DEALER2 Astra ... Pass 1 succ 0 fail 0.4 secs

Test DEALER2 XJ6 ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER Mondeo ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER A5 ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER Megane ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER Astra ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER XJ6 ... Pass 1 succ 0 fail 0.5 secs

21.9 Specification Verification

Lotos Verification: performed using CADP 2009-c on a 2.67GHz i920 processor, 4Gb memory,

Windows XP, CygWin 1.7.7-1 and Clove 1.3.

Verification of BROKER (and implicitly its partners) using the annotated Lotos specification and

options ‘-x -r taucomp’:
Generating properties for BROKER ... CPU Time (Real Time)

Generating graph for BROKER ... 22.8 secs (2.2 mins)

 (states/transitions/labels: 19789/67423/11 -> 6/10/11)

Verifying BROKER General Arrange Response ... Success 6.5 secs (12.0 secs)

Verifying BROKER Specific Arrange Response ... Success 6.5 secs (12.0 secs)

Verifying BROKER Always Need Request ... Success 6.2 secs (12.0 secs)

Verifying BROKER Deadlock Freedom ... Success 6.5 secs (11.0 secs)

Verifying BROKER Livelock Freedom ... Success 6.5 secs (14.0 secs)

Verifying BROKER Initials Safety ... Success 6.3 secs (11.0 secs)

Verifying BROKER Always Exit ... Success 6.5 secs (11.0 secs)

Verification of LENDER (and implicitly its partners) using the annotated Lotos specification and

options ‘-x -r taucomp’:
Generating properties for LENDER ... CPU Time (Real Time)

Generating graph for LENDER ... 21.6 secs (1.6 mins)

 (states/transitions/labels: 7425/9481/14 -> 5/13/14)

Verifying LENDER Any Loan Response ... Success 6.3 secs (12.0 secs)

Verifying LENDER General Quote Response ... Success 6.5 secs (12.0 secs)

Verifying LENDER Specific Quote Response ... Success 6.4 secs (12.0 secs)

Verifying LENDER Incomplete Quote Response ... Success 6.3 secs (12.0 secs)

Verifying LENDER Any Ken Low Amount Response ... Success 6.2 secs (11.0 secs)

Verifying LENDER Any Quote Refusal Response ... Success 6.4 secs (12.0 secs)

Verifying LENDER Deadlock Freedom ... Success 6.4 secs (12.0 secs)

Verifying LENDER Livelock Freedom ... Success 6.4 secs (13.0 secs)

Verifying LENDER Initials Safety ... Success 6.1 secs (12.0 secs)

Verifying LENDER Always Exit ... Success 6.1 secs (11.0 secs)

Verification of SUPPLIER (and implicitly its partners) using the annotated Lotos specification and

options ‘-x -r taucomp’:
Generating properties for SUPPLIER ... CPU Time (Real Time)

Generating graph for SUPPLIER ... 22.3 secs (1.2 mins)

 (states/transitions/labels: 6196/58444/59 -> 5/58/59)

Verifying SUPPLIER General Order Response ... Success 6.2 secs (8.0 secs)

Verifying SUPPLIER Specific Order Response ... Success 6.2 secs (8.0 secs)

Verifying SUPPLIER Always Need Request ... Success 6.4 secs (7.0 secs)

Verifying SUPPLIER Deadlock Freedom ... Success 6.2 secs (7.0 secs)

62

Verifying SUPPLIER Livelock Freedom ... Success 6.3 secs (10.0 secs)

Verifying SUPPLIER Initials Safety ... Success 6.2 secs (7.0 secs)

Verifying SUPPLIER Always Exit ... Success 6.2 secs (7.0 secs)

21.10 Implementation Validation

BPEL Validation: performed using Mustard on a 2.67GHz i920 processor, 4Gb memory, Windows

XP, CygWin 1.7.1-1, Mint 1.2 and Mustard 1.8.

Validation of BROKER using the generated Bpel implementation:
Test BROKER Mondeo Ken ... Pass 1 succ 0 fail 0.6 secs

Test BROKER A5 Scotland ... Pass 1 succ 0 fail 0.6 secs

Test BROKER Megane ... Pass 1 succ 0 fail 0.6 secs

Test BROKER Astra ... Pass 1 succ 0 fail 0.6 secs

Test BROKER XJ6 ... Pass 1 succ 0 fail 0.6 secs

Validation of LENDER and its partners using the generated Bpel implementation:
Test APPROVER Low Rate ... Pass 1 succ 0 fail 0.5 secs

Test APPROVER Medium Rate ... Pass 1 succ 0 fail 0.5 secs

Test APPROVER High Rate ... Pass 1 succ 0 fail 0.5 secs

Test APPROVER Loan Unacceptable ... Pass 1 succ 0 fail 0.5 secs

Test ASSESSOR Low Risk ... Pass 1 succ 0 fail 0.5 secs

Test ASSESSOR Medium Risk ... Pass 1 succ 0 fail 0.5 secs

Test ASSESSOR High Risk ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Little Low Risk ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Little Medium Risk ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Little High Risk ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Lots Ken ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Lots Scotland ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Lots Under 15000 ... Pass 1 succ 0 fail 0.5 secs

Test LENDER Lots Exceeds 15000 ... Pass 1 succ 0 fail 0.5 secs

Validation of SUPPLIER and its partners using the generated Bpel implementation:
Test DEALER1 Mondeo ... Pass 1 succ 0 fail 0.5 secs

Test DEALER1 A5 ... Pass 1 succ 0 fail 0.5 secs

Test DEALER1 Megane ... Pass 1 succ 0 fail 0.5 secs

Test DEALER1 XJ6 ... Pass 1 succ 0 fail 0.5 secs

Test DEALER2 Mondeo ... Pass 1 succ 0 fail 0.5 secs

Test DEALER2 A5 ... Pass 1 succ 0 fail 0.5 secs

Test DEALER2 Astra ... Pass 1 succ 0 fail 0.5 secs

Test DEALER2 XJ6 ... Pass 1 succ 0 fail 0.6 secs

Test SUPPLIER Mondeo ... Pass 1 succ 0 fail 0.6 secs

Test SUPPLIER A5 ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER Megane ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER Astra ... Pass 1 succ 0 fail 0.5 secs

Test SUPPLIER XJ6 ... Pass 1 succ 0 fail 0.6 secs

63

CRESS Target Languages

22. Overview

See the Cress home page for an overview of Cress and some references. Cress (Chisel Representation

Employing Systematic Specification) supports translation to the following target languages.

 BPEL/WSDL

 CPL

 Lotos

 SDL

 VoiceXML

23. Working with BPEL

To deploy and run generated device, grid or web services, you will need Apache Tomcat (e.g. version

5.5.12 onwards) and ActiveBPEL (version 5.0.0 onwards). Device services require separate code for

OSGi developed by the principal author (notably a SoapProxy bundle). To deploy and run grid

services will also need Globus WS Core (version 4.2 onwards). Statistics services require the R

statistics package (version 2.9 onwards) or the Stata statistics package (version 11 onwards). To test

grid, statistics or web services requires JUnit (version 4.0 onwards).

Without alteration, ActiveBPEL versions 3.N onwards require a JVM version 1.5.N. However,

based on online advice it is possible to fix this by adding the following to bpr/aeEngineConfig.xml

(and possibly also webapps/active-bpel/WEB-INF/classes/aeEngineConfig.xml):

<entry name="SOAPMessageFactory">

 <entry name="Class" value="org.apache.axis.soap.MessageFactoryImpl"/>

</entry>

As supplied, ActiveBPEL installs and runs only in Tomcat 5. However, with alterations to the

installation script (no use of the shared directory) and with small corrections (a few JSPs) it will run

in Tomcat 7. Note that Tomcat 5 stores JARs in Tomcat/shared/lib, whereas Tomcat 7 stores them in

Tomcat/lib. If you are using Tomcat 5, copy (Windows) or symlink (Unix) Tomcat/shared/lib to

Tomcat/lib.

ActiveBPEL periodically checks for new (un)deployments. By default, this is every 20 seconds –

perhaps too slow during development. As an example, change the file .../Tomcat/webapps/active-

bpel/WEB-INF/web.xml as follows for scans every 5 seconds (5000 msec):

<init-param>

 <param-name>scan.interval</param-name>

 <param-value>5000</param-value>

</init-param>

ActiveBPEL provides a SOAP message monitor. If it is necessary to turn this on, change the file

.../Tomcat/shared/classes/ae-server-config.wsdd to uncomment the following:

<requestFlow>

 ...

 <handler type="java:org.apache.axis.handlers.SOAPMonitorHandler"/>

</requestFlow>

<responseFlow>

 <handler type="java:org.apache.axis.handlers.SOAPMonitorHandler"/>

http://www.cs.stir.ac.uk/~kjt/research/cress.html
http://jakarta.apache.org/tomcat/
http://sourceforge.net/projects/activebpel502/
http://toolkit.globus.org/toolkit/
http://www.r-project.org/
http://www.r-project.org/
http://www.stata.com/
http://www.junit.org/
http://groups.google.com/group/bpel-dev/browse_thread/thread/34a74c56b02f84d7/6c54c52236ccb365

64

</responseFlow>

When a BPEL service is created, deployed or undeployed it is checked whether the service

already exists. If so, the current user must be the same as the user who previously created it. (This is

to avoid interference among multiple users who share the same ActiveBPEL installation.) If

necessary, the previous version must be manually removed (cress/bpel/<diagram> or

Tomcat/bpr/<service.*>).

The -j option of cress_bpel generates a Java interface to the top-level BPEL service. Currently

this is restricted to services that have either simple types or single-level structured types for input or

output. A structured type may not currently have structured values within it. The Java interface is an

application that takes a list of input values on the command line and prints the result of calling the

service (a list of output values or a fault). The cress_invoke command makes this easier to call. If a

service has just one port, ‘-j .’ is sufficient (‘.’ meaning any port). If a service has multiple ports, the

one to use must be specified (e.g. ‘-j order’). If a service uses subsidiary diagrams with multiple ports,

this may be a limitation as only one port can currently be specified.

If a service assigns to fields of structured types, when using BPEL version 1.1 (but not version 2)

it is essential to select ‘Auto create target path for Copy/To’ in the ActiveBPEL console

configuration. Failure to do this will result in errors like ‘query expression did not evaluate to single

node’. When using BPEL version 2 onwards, this is unnecessary as the relevant BPEL extension is

enabled automatically.

ActiveBPEL schema validation may incorrectly report errors (notably with the MATCHER

example). In such a case, deselect ‘Validate Input/Output messages against schema’.

A partner (non-BPEL) service is deployed by ActiveBPEL/AXIS under the port name. Suppose

that partner service approver has ports borrow and loan. This will result in the AXIS services

ApproverBorrow and ApproverLoan. These services are available at http://localhost:8080/active-

bpel/services. The first part of this is determined by the Cress configuration file. The services part is a

configuration parameter to ActiveBPEL (.../Tomcat/webapps/active-bpel/WEB-INF/web.xml) and to

Cress ($serv_path in cress_bpel/customise).

A BPEL service is deployed by ActiveBPEL/AXIS under the service name. For example, BPEL

service lender results in the AXIS service LenderService.

Although you can run cress_bpel from the command line, it is better to use the BPEL framework.

In the bpel directory, issue a command such as:
cress_expand -v ws main.bpel

(The ds and gs vocabularies can also be used.) Optionally use -d to deploy the files as well. Note that

main.bpel is a fictitious file; the framework file is actually main.base. A simpler way to create and

deploy services is with, for example:
cress_realise –t bpel -v ws

You can use cress_deploy to deploy, undeploy and redeploy files.

Each service and its associated partners will be created in a directory under the bpel directory. For

example, the supplier web service and its two partner dealer services will be created under the

bpel/supplier directory.

Since there is no unique root diagram for BPEL, you will need to adjust the configuration diagram

to suit the services required. The generated files will then be particular to these services.

Partner and service files are created in the service directory. For example, the ws/supplier service

creates dealer1.*, dealer2.* and supplier.* files in the ws/supplier directory. When processed with

cress_expand, these are copied and augmented in directory bpel/supplier. See bpel_create and

cress_bpel for more details.

A file *.[bpel|bpr|wsdl|wsr] is pre-translated code for a service.

For GS/WS, a file <service>.extra is treated as extra definitions to be included in

<service>_defs.wsdl, and a file <partner>.extra is treated as extra definitions to be included in

<partner>.wsdl (disregarding any _<parent> suffix).

When working with grid services, note that absolute paths to Globus files are generated based on

the value of GLOBUS_LOCATION. Cress also assumes a particular directory structure for GT4

65

schema files. Any GS files supplied with Cress must be re-generated according to the local GT4

installation directory.

Grid services can be deployed/undeployed in GT4 only when it is not running. If a proxy

credential has been created, GT4 can be started with globus-start-container. To avoid conflict with

ActiveBPEL, GT4 should normally be run at a port other than 8080 with a command-line parameter

like ‘-p 8880’. If a proxy credential has not been created, use the ‘-nosec’ (no security) option on the

command line. The grid service examples supplied with Cress are defined to run at

http://localhost:8880/wsrf/services.

Deployment of grid services assumes that Globus WS Core has been deployed locally according

to the environment variable GLOBUS_LOCATION. This has two implications:

 GAR files are made available to Globus at this location. If Globus is not installed locally,

do not request deployment of grid services. Instead, the generated GAR files can be

deployed manually to Globus on the relevant system.

 WS-Addressing and WS-Resource files are imported from this location. If Globus is not

installed locally, replace the local file reference with URLs as follows:

 http://www.w3.org/2006/03/addressing/ws-addr.xsd

 http://docs.oasis-open.org/wsrf/rpw-2.wsdl

 http://docs.oasis-open.org/wsrf/rw-2.wsdl

If the Tomcat container for ActiveBPEL is running via an Internet proxy, the system properties for the

proxy need to be defined, e.g.
CATALINA_OPTS=-DproxySet=true -DproxyHost=wwwcache.stir.ac.uk

 -DproxyPort=8080

If use of WSDL2Java also requires a proxy, edit the generateStubs target under the <java> task in

$GLOBUS_LOCATION/share/globus_wsrf_tools/build-stubs.xml to add the proxy settings, e.g.:
<sysproperty key="proxySet" value="true"/>

<sysproperty key="proxyHost" value="wwwcache.stir.ac.uk"/>

<sysproperty key="proxyPort" value="8080"/>

If the grid services tests supplied are to be repeated, note that the Converter and Statistics

implementations require access to JUnit 4.0 and a MySQL database with the following parameters:

 host localhost, port 3306, database test

 user test, password gs-test

For the grid service tests supplied, note that STATISTICS depends on CONVERTER. It is therefore

necessary to first build SPLITTER (and hence CONVERTER). Then copy its JAR file

bpel/splitter/converter/lib/converter_splitter.jar to gs/analyser/statistics/lib/converter_splitter.jar.

Provided the interface to CONVERTER does not change, ANALYSER and SPLITTER can now be built

independently.

For the grid service tests supplied, note that COUNTER depends on PARSER. It is therefore

necessary to first build MATCHER (and hence COUNTER). Then copy its JAR file

bpel/matcher/parser/lib/parser.jar to gs/matcher/counter/lib/parser.jar. Provided the interface to

COUNTER does not change, MATCHER can now be built directly. Note that GT4 has a counter

service too (globus_wsrf_core_samples_counter). If the Cress version is to be run, the GT4 version

must be undeployed first.

Statistics services can call on a statistical package that runs on the local machine, a remote

machine (via ssh), or in a Condor pool. Supported is currently provided for R and Stata (which must,

of course, be available on the target machine).

When working with web services, if the file <partner>.java is present in the ws/<service>

directory, it is used as the implementation of the partner service.

24. Working with CPL

To deploy and run generated CPL, you will need a CPL-capable SIP server such as SER (SIP Express

Router) .

Although you can run cress_cpl from the command line, it is better to use the CPL framework. In

the cpl directory, issue the command:

http://www.w3.org/2006/03/addressing/ws-addr.xsd
http://docs.oasis-open.org/wsrf/rpw-2.wsdl
http://docs.oasis-open.org/wsrf/rw-2.wsdl
http://www.iptel.org/ser/
http://www.iptel.org/ser/

66

cress_expand -v voip main.cpl

Optionally use -d to deploy the files as well. A simpler way to create and deploy services is with,

for example:
cress_realise –k user:password@host –t cpl -v voip

You can also use cress_deploy to deploy, undeploy and redeploy files. Both of these require -a to

define server authorisation in the form user:password@host, e.g. ken:obscure@sip.cs.stir.ac.uk.

25. Working with Lotos

To analyse and execute the generated specifications, you will need Lola/Topo (e.g. version 3.6

onwards). The author has a version of these compiled for CygWin on Windows. You might also use

CADP (e.g. version 2009-b onwards) for verification.

Although you can run cress_lotos from the command line, it is better to use the Lotos framework.

As an example, go to the lotos directory and issue:
topo in -lola -l stir

or (if you get hold of the author’s tlotos interface to Topo):
tlotos in

with the proviso that when first used with a new Lotos file the -s flag should be given for the stir

library. A simpler way to create and deploy services is with, for example:
cress_realise -t lotos -v ws

The corresponding commands for CADP look like:
cadp_annotate ws

caesar.adt –error –warning ws

caesar –error –warning ws

Note that caesar.adt will issue warnings that external operations should not have equations. It is

normally possible to disregard these warnings since the equations are needed for Lola/Topo (but are

ignored by CADP). caesar may issue warnings about unreachable processes. This typically happens

with event dispatcher code and can be ignored. Make sure to set the CADP_CC environment variable

(see section 5). Also see the notes about cadp_annotate. Through cadp_annotate, Cress generates

*.custom (customised value enumerations), *.f (functions) and *.t (types). These are not complete but

should at least allow the files to be compiled by Caesar. They are designed to be used with Clove

(which completes them automatically.

The integrated event dispatcher generated for DS/GS/IVR/SS/WS makes significant use of

recursion. Although Lola issues warnings about possible recursive process instantiation, these can be

disregarded. However, CADP treats this situation as an error. It is therefore possible to generate

qualified event dispatchers with one fault or compensation process per scope (‘-q’ option). These

work with Lola and often work with CADP. However, CADP can still report an error if behaviour is

repeated (‘-r’ option) and fault or compensation handling is required in a Fork branch. In such a case,

avoid repeated behaviour for the service where this situation applies (omit the service in the ‘-r’ list).

For DS/GS/SS/WS, if a fault is not explicitly caught then the default BPEL behaviour is to

compensate the scope where it occurs and to rethrow the fault to the enclosing scope. Ultimately the

fault is returned to the caller. It is difficult to achieve the same effect with Lotos because the correct

response event is unknown, and because the fault may occur inside a Fork. It is probably poor design

to rely on default fault handling; explicitly dealing with faults is preferable. For these reasons, if an

uncaught fault occurs (including JoinFailure) then the Lotos service will deadlock. During validation

or property checking, this should identify that the service is underspecified.

Cress makes use of a shared library of data types called stir (for Stirling). Three stir files are

provided in the supp/topo directory. They should be copied to where Topo can access them, e.g. the

lotos directory or the topo/stdlib installation directory.

http://www.cs.stir.ac.uk/~kjt/software/lotos/topo.html
http://www.inrialpes.fr/vasy/cadp/

67

The file in.lot will be built automatically from the in.base framework. Now you can do whatever

you do with Lotos. Delete the file in.lot to force a re-build if you change the configuration diagram.

Alternatively touch the file in.base.

A file *.lot is a pre-translated version of the diagram, merged on its own with the root diagram.

When working with web services, if the file <partner>.lot is present in the ws/<service>

directory, it is used as the specification of the partner service.

If the ‘-a’ flag is provided to cress_lotos, a file with suffix *.lotos will be created for CADP. This

is automatically annotated so that caesar can compile it. It is not possible to make the annotation

perfect. For example, externally implemented operations will receive complaints that they have

equations, and application-defined sorts and operations may need to be added to the customisation in

cadp_annotate.

Cress makes use of shared header files Stirling*.h that implement key data types for CADP.

These are provided in the supp/cadp directory. They should be copied to where CADP can access

them, e.g. the cadp/incl installation directory.

26. Working with SDL

To analyse and execute the generated specifications, you will need Telelogic Tau SDL Suite for

SDL/MSC.

An appropriate Cress filter must be set up using the Generate/Analyze command. Set the Filter

Command to sdt_in, etc. according to the domain vocabulary. (The Tau files provided with Cress are

already set up in this way, though you may need to alter the setting depending on your platform or

paths.)

Although you can run cress_sdl from the command line, it is better to use the SDL framework.

Find the sdl directory and open the relevant *.sdt file with Tau SDT. Click on the Analyze, Simulate

or Validate button to build the specification and then process it with Tau SDT. Now you can do

whatever you do with SDL. Force a re-build if you change the configuration diagram. Do this by re-

saving the top-level system diagram *System.ssy.

A file *.pr is a pre-translated version of a diagram, merged on its own with the root diagram.

27. Working with VoiceXML

To deploy and run Cress IVR services, you will need V-Builder and associated packages from Nuance

Corporation (e.g. version 1.2 onwards). This is a substantial and complex set of downloads that needs

registration and approval by Nuance. At least Nuance V-Builder, Nuance Vocalizer and a Nuance

language pack will be needed.

Although you can run cress_vxml from the command line, it is better to use the VoiceXML

framework. In the vxml directory, issue the command:
cress_expand -v ivr main.vxml

A simpler way to create and deploy services is with, for example:
cress_realise -t lotos -v ivr

Since there is no unique root diagram for VoiceXML, you will need to adjust the configuration

diagram to suit your application. The generated *.vxml file will then be particular to that application,

and should be copied if necessary.

With V-Builder (version 1.2), open main.vbuilder in the vxml directory. This file is configured to

use UK English and the VoiceXML file main.vxml (as generated by cress_vxml). Edit main.vbuilder if

required (e.g. for an appropriate language).

Start the Nuance Vocalizer and choose a particular speaker (e.g. Tim Cooper, mu-law). Then in

Nuance V-Builder use Tools/Run Dialog to start the VoiceXML system. Now you can use Run

Dialog to execute the script, using a microphone for input and hearing the output on speakers. The

DynaViz tab also shows an overview of execution.

http://www-01.ibm.com/support/docview.wss?uid=swg21380566
http://www.nuance.com/
http://www.nuance.com/

68

A file *.vxml is a pre-translated version of a diagram, merged on its own with the root diagram.

69

CRESS File Manifest

28. General Files

28.1 Naming Conventions

The following file names are used in various directories. Archived specifications can be used directly

(e.g. with Mustard or Clove) without having to regenerate them.

File Purpose

.archive archive directory for previous versions of files

*.bpel root plus features as BPEL

*.bpr root plus features as Business Process Archive

*.chx Chive XML version of Cress diagram

*.class Java class file

*.clove Clove verification properties

*.cpl CPL service

*.custom C header file for customised CADP type enumerations

*.diagram2 Diagram! version of Cress diagram

*.f C header file for CADP function definitions

*.java Java source file

*.lot root plus features in Lotos

*.lotos Lotos file for use with CADP

*.mustard Mustard scenarios

*.pdd root plus features as Process Deployment Descriptor

*.pdf PDF version of Cress diagram

*.pl Perl file

*.pr root plus features as SDL/PR

.properties Java properties file (used by Mint)

*.svl CADP Script Verification Language file

*.t C header file for CADP types

*.upload Chive or cress_deploy upload timestamp

*.vbuilder V-Builder project file

*.vxml root plus features as VoiceXML

*.wsdl root plus features as WSDL

*.wsr root plus features as Web Service Archive

28.2 Binary Files (directory bin)

File Purpose

cadp_annotate automatically annotate a Lotos specification for CADP

bpel_create create partner or BPEL service archive using ActiveBPEL

70

File Purpose

bpel_deploy deploy partner or BPEL service archive using ActiveBPEL

cress_alias C-shell aliases for commands during internal testing

cress_bpel command-line script to translate diagrams to BPEL/WSDL

cress_bpel.pm BPEL/WSDL translator functions

cress_check command-line script to check collection of diagrams (used by Chive)

cress_common.pm common functions

cress_expand command-line script to expand embedded macros

cress_cpl command-line script to translate diagrams to CPL

cress_cpl.pm CPL translator functions

cress_lexer.pm lexical analyser functions for Diagram! diagrams

cress_lola command-line script to clean up Lola (Lotos) traces

cress_lotos command-line script to translate diagrams to Lotos

cress_lotos.pm Lotos translator functions

cress_parser.pm parser functions

cress_realise create and deploy services

cress_sdl command-line script to translate diagrams to SDL

cress_sdl.pm SDL translator functions

cress_sdt command-line script to make Tau SDT (MSC/PR) from Lola (Lotos) traces

cress_test command-line script to run JUnit tests on BPEL services

cress_tidy command-line script to delete temporary Lola/Tau files

cress_validate command-line script to validate a specification (used by Chive)

cress_verify command-line script to verify a specification (used by Chive)

cress_vocab.pm domain-specific vocabulary definitions

cress_vxml command-line script to translate diagrams to VoiceXML

cress_vxml.pm VoiceXML translator functions

sdt_in IN analyser filter for Tau SDT

sdt_ivr IVR analyser filter for Tau SDT

sdt_sip SIP analyser filter for Tau SDT

28.3 Documentation Files (directory doc)

File Purpose

cress_manual.doc, cress_manual.pdf Cress manual in Microsoft Word and Adobe PDF format

cress.html, cress.css, etc. Cress overview in HTML format

todo.txt notes on further work

28.4 Support Files (directory supp)

File Purpose

cadp
directory containing implementations of Cress types for

CADP (the X versions modified from the originals)

gt4
directory containing extra code for compatibility with

GT4.2

palettes
directory containing Chive and Diagram! palettes for

Cress

71

File Purpose

topo directory containing Stirling Lotos library for Cress

types directory for generated type files

28.5 Test Files (directory test)

File Purpose

bpel-ds.test Device Service tests (Knopflerfish)

sdl-ivr IVR data types tests (Tau)

lotos-gs.test GS data types tests (Topo)

lotos-ivr.test IVR data types tests (Topo)

lotos-ws.test WS data types tests (Topo)

testa test arrows and targets

testb test GS/WS fork/join branches

testf test features (guarded and unguarded)

testg test guards

testh test DS/GS/SS/WS handlers

testi test inputs

testp test DS/GS/SS/WS pick

testr test repeats and loops

29. Application Domain Files

29.1 Chisel Files (directory chisel)

These spliced features for the IN are based on the original Chisel ones.

File Purpose

cfbl Call Forward Busy Line (feature)

cnd Calling Number Delivery (feature)

incf Intelligent Network Call Forwarding (feature)

infb Intelligent Network Freephone Billing (feature)

infr Intelligent Network Freephone Routing

intl Intelligent Network Teen Line (feature)

pots Plain Old Telephone Service (root)

tcs Terminating Call Screening (feature)

twc Three-Way Calling (feature)

29.2 Device Service Files (directory ds)

File Purpose

cupboard monitor cupboard switch input (root)

door monitor door switch input and locking output (root)

door_all lock or unlock all doors (feature)

door_light turn on light on entering house (feature)

door_lounge set lounge environment on entry (feature)

72

File Purpose

fall monitor fall detector input (root)

fall_movement report alert if no movement after fall (feature)

heating monitor heating output (root)

heating_frost issue frost warning if heating turned off in frosty conditions (feature)

speech monitor speech input and output

speech_help dialogue to ask for the weather forecast or for help (feature)

weather dummy weather service (root)

window monitor window switch input (root)

29.3 Grid Service Files (directory gs)

File Purpose

allocator perform translation of a job name (root)

analyser frequency analysis of occupational data (root)

config_gs GS configuration diagram

doublemap map occupational data from scheme X to Y to Z (root)

lookup perform parallel translation of a job name (root)

matcher document comparison scores (root)

scorer document content analysis scores (root)

splitter split frequency analysis of occupational data (root)

29.4 Intelligent Network Files (directory in)

File Purpose

cc Charge Call

cfbl Call Forward Busy Line

cnd Calling Number Delivery

config_in IN configuration diagram

incf Intelligent Network Call Forwarding

infb Intelligent Network Freephone Billing

infr Intelligent Network Freephone Routing

intl Intelligent Network Teen Line

pots Plain Old Telephone Service (root)

rc Return Call

tcs Terminating Call Screening

twc Three-Way Calling

29.5 Interactive Voice Response Files (directory ivr)

File Purpose

account account number request and server submission

booking booking for room date/nights/type (root)

config_gs IVR configuration diagram

confirm confirmation request

contact contact phone number request

customer customer number request and server submission

73

File Purpose

deaf do not listen during prompts

donation donation for charity/amount (root)

glucose blood sugar level checking (root)

handwash hand washing (root)

introduction introduction and generic handlers

limb limb-donning (root)

order order for quarry product/weight (root)

pin PIN request and server submission

restart restart request

smoothie strawberry smoothie making (root)

wait wait indefinitely during prompts

29.6 Session Initiation Protocol Files (directory sip)

File Purpose

agent User Agent (root)

agent_cfbl Call Forward Busy Line for User Agent

agent_tcs Terminating Call Screening for User Agent

config_sip SIP configuration diagram

proxy Proxy Server (root)

proxy_cfbl Call Forward on Busy Line for Proxy Server

proxy_tcs Terminating Call Screening for Proxy Server

redirect Redirect Server (root)

29.7 Statistics Service Files (directory ss)

File Purpose

bhps3
extract health and job information from three decades 1991–2001, 1992–2002 and 1993–

2003 of the BHPS survey, correlating the relationship between health and job (root)

bhps_shs
extract health information from BHPS 1995 and job information from SHS 1995,

correlating the relationship between health and job (root)

config_ss SS configuration diagram (root)

job_health
combine health and job information from, say, BHPS 1995, merging on personal

identifier (root)

merger match-merge two files (root)

merger2 match-merge two files with log output (root)

29.8 Voice over Internet Protocol Files (directory voip)

Service Purpose

agent_check check on user-agent

config_sip VoIP configuration diagram

forward_always unconditional call forwarding

forward_lookup forward through registration lookup

forward_subject forward on subject

forward_voicemail forward to voicemail

74

Service Purpose

priority_language forward by priority and language

reject_busy reject based on caller

reject_offline use of mail and reject

reject_sunday reject based on time

screen_premium reject based on call number

29.9 Web Service Files (directory ws)

File Purpose

broker car and loan arranger (root)

config_ws WS configuration diagram

lender loan arranger (root)

supplier car supplier (root)

30. Target Language Files

30.1 BPEL/WSDL Files (directory bpel)

File Purpose

main.base BPEL framework (fixed specification base)

analyser frequency analysis of occupational data

broker car broker service

cupboard cupboard device services

door door device services

fall fall device services

lender lender service

matcher document comparison scores

merger match-merge two files

merger2 match-merge two files

scorer document content analysis scores

splitter split frequency analysis of occupational data

supplier car supplier service

window window device services

30.2 CPL Files (directory cpl)

File Purpose

main.base CPL framework (fixed specification base)

main.cpl CPL service (generated)

30.3 Lotos Files (directory lotos)

File Purpose

ds.base DS framework (fixed specification base)

ds.ctx DS context (Topo)

ds.lot DS working specification (generated)

75

File Purpose

gs.base GS framework (fixed specification base)

gs.ctx GS context (Topo)

gs.lot GS working specification (generated)

gs.make GS specification makefile

in.base IN framework (fixed specification base)

in.ctx IN context (Topo)

in.lot IN working specification (generated)

in.make IN specification makefile

ivr.base IVR framework (fixed specification base)

ivr.ctx IVR context (Topo)

ivr.lot IVR working specification (generated)

ivr.make IVR specification makefile

sip.base SIP framework (fixed specification base)

sip.ctx SIP context (Topo)

sip.lot SIP working specification (generated)

sip.make SIP specification makefile

ws.base WS framework (fixed specification base)

ws.ctx WS context (Topo)

ws.lot WS working specification (generated)

ws.make WS specification makefile

30.4 SDL Files (directory sdl)

File Purpose

BillingSystem.spr IN/SIP billing system process definition

CallCoordinator.spr IN call coordinator process definition

IN.map IN overall name to EPS file map

IN.sdt IN overall Tau SDT control file

INStructure.sbk IN main block definition

INSystem.pr IN working SDL/PR for IN (generated)

INSystem_All.pr IN working SDL/PR POTS plus all features (archive)

INSystem.ssy IN overall system definition

ServiceControl.spr IN service control point process definition

StatusManager.spr IN/SIP status manager process definition

Switch.spr IN switch process definition

Application.spr IVR application process definition

Recogniser.spr IVR recogniser process definition

IVR.map IVR overall name to EPS file map

IVR.sdt IVR overall Tau SDT control file

IVRStructure.sbk IVR main block definition

IVRSystem.pr IVR SDL/PR for IVR (generated)

IVRSystem_Booking.pr IVR SDL/PR for BOOKING plus all features (archive)

IVRSystem_Donation.pr IVR SDL/PR for DONATION plus all features (archive)

IVRSystem_Order.pr IVR SDL/PR for ORDER plus all features (archive)

76

File Purpose

IVRSystem.ssy IVR overall system definition

AgentCoordinator.spr SIP agent coordinator process definition

BillingSystem.spr SIP/IN billing system process definition

ProtocolBuffer.spr SIP protocol buffer process definition

ProxyServer.spr SIP proxy server process definition

RedirectServer.spr SIP redirect server process definition

SIP.map SIP overall name to EPS file map

SIP.sdt SIP overall Tau SDT control file

SIPStructure.sbk SIP main block definition

SIPSystem.pr SIP pre-translated SDL/PR for system

SIPSystem_Agent.pr SIP specification for AGENT plus all features (archive)

SIPSystem_Proxy.pr SIP specification PROXY plus all features (archive)

SIPSystem_Redirect.pr SIP specification REDIRECT plus all features (archive)

SIPSystem.ssy SIP overall system definition

StatusManager.spr SIP/IN status manager process definition

UserAgent.spr SIP user agent process definition

30.5 VoiceXML Files (directory vxml)

File Purpose

main.base VoiceXML framework (fixed specification base)

main.vbuilder V-Builder project file (fixed)

main.vxml VoiceXML file (generated)

31. CRESS Licence

This program is free software. You can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation - either version 2 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful but without any warranty, without

even the implied warranty of merchantability or fitness for a particular purpose. See the GNU

General Public License for more details.

You may re-distribute this software provided you preserve this description of the Cress Tool

Suite. Bug reports should be sent to Ken Turner, who would also appreciate receiving any corrections

and comments.

32. History

Version 1.N of Cress was inspired by the Chisel work at BellCore. For this reason, the first letter of

‘Cress’ originally stood for ‘Chisel’.

32.1 Versions 1.0 – 2.0

Ken Turner, December 1999 – April 2001.

32.2 Version 2.1

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.cs.stir.ac.uk/~kjt/

77

Ken Turner, 1st November 2001.

32.3 Version 2.2

Ken Turner, 28th February 2002.

32.4 Version 2.3

Ken Turner, 28th June 2002:

 added SIP vocabulary and SIP diagrams

 added support for ‘Charge Call’ through ‘BillPIN’ profile variable and ‘CC’ profile definition

 fixed some subtle bugs with diagram parsing when loops are present

32.5 Version 2.4

Ken Turner, 31st October 2002:

 added SIP support for SDL

32.6 Version 2.5

Ken Turner, 26th March 2003:

 added VoiceXML support for Lotos

32.7 Version 2.6

Ken Turner, 31st May 2003:

 added VoiceXML support for SDL

32.8 Version 2.7

Ken Turner, 25th February 2004:

 added support for yEd and GML files

32.9 Version 2.8

Ken Turner, 28th September 2004:

 added support for Chive diagrams

 extended support for Mustard translation into SDL

32.10 Version 2.9

Ken Turner, 24th October 2004:

 extended support for Mustard translation into MSCs

 added further Mustard test files

32.11 Version 3.0

Ken Turner, 13th May 2005:

 added BPEL and Lotos support for web services

 added initial BPEL/WSDL support for web services

32.12 Version 3.1

Ken Turner, 31st August 2005:

 extended BPEL and Lotos support for web services

 all diagrams (except some for testing) converted from Diagram! to Chive

78

32.13 Version 3.2

Ken Turner, 21st September 2005:

 Mustard separated from Cress

 extensions to SDL and VoiceXML code generation

 fixes to VoiceXML framework

32.14 Version 3.3

Ken Turner, 22nd November 2005:

 updated for Tau 4.6 (on Windows)

32.15 Version 3.4

Ken Turner, 4th August 2006:

 included support for grid services with Globus WS Core 4.0.1

 fixed WSDL creation if there are no types

 allowed (guarded) assignments on arcs following not just invoke

 archived files moved to .arch subdirectories of top-level directories

 updated for ActiveBPEL 2.1, Apache Tomcat 5.5.12 and JUnit 4.0

 code timings updated for faster processor

 documentation completely reworked as MS Word/PDF

32.16 Version 3.5

Ken Turner, 1st September 2006:

 enhanced Lotos specifications for CONVERTER and STATISTICS

 Mustard validation of SPLITTER (and implicitly ANAYSER)

 created Lotos specifications for COUNTER and PARSER

 Mustard validation of MATCHER (and implicitly SCORER)

 command-line help improved

 all diagrams redrawn with Chive 1.4 and converted to PDF

32.17 Version 3.6

Ken Turner, 27th August 2007:

 the archive directory is now named ‘.archive’ rather than ‘.arch’

 addition of cress_test to run JUnit tests on BPEL services

 addition of CPL support (thanks to Dean McMenemy, University of Stirling)

 graceful detection and reporting of supp directory not being in CRESSPATH

 comments (//) must now be at the start of a line or preceded by white space

 cress_bpel now correctly handles assignments for Else if there are no peer assignments

 Cress common data types are now in the stir library, following substantial work on

harmonising the data type definitions

 equations have been corrected for lt, le, gt, ge in Text

 the manual has been extended to deal with the above changes

32.18 Version 4.0

Ken Turner and Larry Tan, 31st July 2008:

 cadp_annotate has been added for automatic annotation of Lotos files for CADP

 cress_bpel and cress_expand now have option ‘-b’ with value 1 (BPEL4WS 1.1) or 2 (WS-

BPEL 2.0)

79

 cress_bpel now supports BPEL 2 assignments, dynamic partner assignment, expressions,

extensions, imports, joins, link statuses, namespaces, sources, switches, targets, terminations,

transition conditions, while loops

 for parent diagrams, cress_bpel now creates WSDL rather differently: all types and messages

are associated with the namespace of their defining diagram, so WSDL definitions of these

are created for the parent and imported

 cress_common now exports the Cress based directory as $cress, and this is used by cress_test

to locate GS/WS test files

 for Java compilation, cress_create now uses Java 1.5 as target since ActiveBPEL (version 3

onwards) runs under only JRE 1.5

 cress_create no longer prefixes BPR files with the diagram priority

 cress_deploy and cress_expand now use ‘-k’ for the CPL server authorisation key

 cress_lotos now has option ‘-a’ for generating CADP annotations (types, SVL scripts)

 cress_lotos now generates a slightly different type for Message for compatibility with

Mustard 1.5

 cress_parser.pm diagnostics for the graph now include a level number (e.g. ‘: 3’)

 cress_parser.pm now disregards an empty (Null) node as an offspring for the purposes of

checking the consistency of offspring types

 cress_parser.pm now supports a node parameter with multiple parentheses such as

‘(\w+)\.(\d\d)’, being ultimately ended by white space or the end of the list

 cress_parser.pm no longer removes an outer level of parentheses from a node parameter

 cress_parser.pm now allows the first template node to contain Perl regular expressions as

well as literal parameters; parenthesised parts of a regular expression are numbered 1, etc.

from left to right, and can be used as $1, etc. in the body of a template

 the broker and supplier WS examples have been changed so that an unavailable car is priced

at a million and not 999999

32.19 Version 4.1

Ken Turner and Larry Tan, 1st September 2008:

 all code made compatible with ActiveBPEL 5.0.2 and Globus WS Core 4.2:

o 2005/08 version of WS-Addressing

o new locations for Globus libraries and tools

o GAR deployment now overwrites an existing deployment

o cress_create and cress_test use the new Globus libraries

o all GS examples updated

 cress_bpel now takes the ‘-o’ option to generate operational test files for Mint (*.properties)

 the stir Lotos library has been updated and needs to be made available to Topo/Lola:

o definition of percent now rounds the result to the nearest integer

o arithmetic and comparison of numbers now deal properly with fractional parts

 the supp directory has been structured into sub-directories for each application

 the GS Matcher-Scorer example now has the same list of common words for the Lotos

specification and the Java implementation, and the list of separators in Lotos is now .-*@/

32.20 Version 4.2

Ken Turner and Larry Tan, 9th April 2009:

 all archive files moved to top level ‘.archive’ directory, and cress_alias changed to match

 variables (including fault variables) can now be declared with an owner in the form

variable:owner

 cadp_annotate now uses named flags for sorts and operations

 chive_font utility added to normalise Chive diagram fonts

 cress_bpel now includes command-line options in the headers of generated files

 cress_bpel and cress_expand now include partners in generated headers, e.g.:
features: ANALYSER/STATISTICS SPLITTER/CONVERTER,DATABASE

80

 cress_bpel and cress_lotos now expect partner specifications/implementations according to

new placement rules (highest diagram for normal partners, first diagram for phantom

partners)

 cress_create and cress_test now run the Java compiler quietly so as to suppress unchecked

type warnings due to Axis

 cress_deploy now reports where it is (un)deploying services, and gives a cleaner warning if

Globus is currently running when deployment is attempted

 cress_expand no longer takes the ‘-a’ or ‘-b’ options – these should be specified in the

configuration diagram

 cress_expand now generates deployment messages for BPEL files if ‘-d’ is not selected

 cress_lotos now uses a different strategy for dynamic partner assignment

 cress_test has been updated to use a different version of the MySQL JDBC connector

 cress_validate now handles BPEL validation with Mustard (Mint) using the ‘-p’ option

 the GS DynaOcc example has been replaced by the more complex Lookup-Allocator example

 the suffix ‘mstd’ rather than ‘mst’ is now defined for Mustard files

 for consistency with WS partners, cress_bpel now deploys GS partners with URL

‘…/<partner><port>’ rather than ‘…/<partner>Service’; GS partner implementations and

tests have been changed to match

 for GS and WS, the input or output parameter of Invoke, Receive and Reply may now be

given as ‘-’ (meaning it is void and omitted)

 WS Echoer and Translator examples have been removed as they were just small illustrations

32.21 Version 4.3

Ken Turner and Larry Tan, 30th January 2010:

 a new DS (Device Services) domain has been added

 most diagrams have been redrawn for Arial Narrow 10-point as a consistent font, and for use

with Chive 1.7

 constants in the code have been capitalised for clarity

 HOME is now a reserved diagram name (for DS)

 cadp_annotate has been modified as follows:

o an empty Where clause is removed, even if a Lotos comment separates it from the

associated EndProc

o the ‘-x’ option specifies maximum size limits for specified types, to reduce the size of

arrays and strings for verification

 cadp_annotate , cress_bpel, cress_cpl, cress_lotos, cress_sdl, cress_vxml no longer have the

‘-a’ option as SVL is now handled by other tools

 cress_bpel has been modified as follows:

o for consistency with XML conventions, fault owners now precede names instead of

following them (e.g. lender:refusal.error)

o the partner given in Receive (initial only) or Reply is checked to be the same as the

diagram name

o an embedded Receive from an external partner is recognised; the generated WSDL has ‘_’

appended to the partner name to mark it as a shadow partner

o the translation of Throw correctly deals with explicit fault owners

o time-related aspects have been added: date/time variables, Timeout events, and Wait

activities

o the translation of scope, flow and handlers has been substantially modified because of the

need to support Timeout

o diagram parameters not used in messages are now correctly handled

o the kind of parameters used in Update nodes are noted

o multiple arcs between the same two nodes are handled

o the transition condition for Else following multiple guards now correctly uses ‘or’

o multiple guarded assignments now work correctly

81

o feature diagrams are included in the list of features if they start with the name of the root

diagram (e.g. the DOOR_LIGHT feature for root DOOR)

o for DS, a new Device action is translated just like Invoke, except that ‘_’ is appended to

the partner name as being a shadow partner

o for DS, a HOME service is expected in the configuration diagram; this is used as the URI

base for OSGi device partners, which are automatically declared with ‘_’ appended to their

names as shadow partners

 cress_create and cress_lotos now take an ‘-f’ option that lists foreign (i.e. non-Cress) partners

that should be ignored for creation, deployment and specification; this option is ignored by

cress_bpel, cress_cpl, cress_sdl and cress_vxml

 cress_create now reports only WSDLException errors in order to accommodate DS, where a

duplicate definition of the Device type is sometimes unavoidable.

 cress_deploy has been modified as follows:

o (un)deploying files is more specific, with reports on success or failure of deployment to

ActiveBPEL and Globus

o for DS/GS/WS, bpel/<diagram> is now deleted if it exists initially, and WSDL files older

than the BPEL diagram are not copied (to allow for a different feature selection on a

previous run)

 cress_lotos has been modified in a number of ways:

o the stir library has been updated with an Environment type for DS/GS/WS, and

parseNumber now eliminates leading and trailing zeros as required; the new version is in

the supp/topo directory

o this Environment type requires a modified version of Lola (3.7.2) that recognises the

date_time ‘constant’

o ‘Fork loose’ is translated correctly

o time-related aspects are supported as for cress_bpel, using the date_time operation now

supported by Lola

o for DS/GS/WS, the diagram in the fork label rather than the current diagram is used when

checking the join condition, thus allowing use of template features

o for DS/GS/WS, the equations for a ‘_Result’ type now use the prefix ‘x’ for ‘partner’,

‘scope’, ‘state’, ‘states’ and ‘status’ equation variables, to avoid a possible clash with a

diagram parameter of the same name

o for DS/GS/WS, node activities may have assignments appended to them

 cress_parser.pm has been modified as follows:

o for consistency with XML conventions, variable owners now precede names instead of

following them (e.g. approver:proposal2)

o an identifier for a diagram or variable can now start with an underscore

o for DS/GS/WS , the first signal parameter is used literally without translating it

o a template parameter can be given in double quotes if it must literally match the original

parameter (e.g. ‘door.in.open’)

 cress_verify has been added to verify Lotos specifications using Clove

 cress_vocab.pm has been renamed cress_vocabulary.pm, is now above cress_common.pm in

the module hierarchy, and predefines a device type/variable for DS

32.22 Version 4.4

Ken Turner, 24th May 2010:

 for DS, cress_bpel append the root diagram name to the names of shadow partners; this

avoids WSDL name clashes where the same shadow partner is used by several root diagrams

 for DS, cress_create ignores shadow partners by checking if their names start with

<foreign>_ using names from the ‘-f’ option (e.g. ‘alert_fall’ is ignored if ‘alert’ is a foreign

partner)

 cadp_annotate now removes Where (and any following comments) in more circumstances,

notably if what follows is multiple comments or EndSpec

 cadp_annotate now checks that type limits are appropriately formatted

82

 cadp_annotate has been substantially reworked to handle limited arrays, sets and strings, and

to handle CADP-like annotations in partner-defined types

 various function names used by cadp_annotate have been changed to match the new CADP

header files

 cress_common.pm now has the correct value for FUNC_SUFFIX, and has had other suffixes

defined for the benefit of Clove

 cress_lotos -a option now takes a comma-separated list of type limits, with ‘.’ meaning no

limits; this replaces the former ‘-x’ option

 cress_lotos can accepts the ‘-q’ option to create qualified event dispatchers, meaning there is

a separate event and compensation handler for each scope; this is to ensure that Cress-

generated Lotos can be processed by CADP

 cress_lotos now generates annotations for arrays in supp/types/types.pl

 for DS/GS/WS, cress_lotos now treats an event with name CatchAll as matching any other

event (irrespective of any associated data)

 for cress_lotos and cress_sdl, the ‘-r’ option now takes a comma-separated list of services

whose behaviour should be repeated at a leaf node; ‘.’ means all services, while omitting this

option means that behaviour stops at a leaf node

 the ‘stir’ library in supp/topo has been updated for limited arrays, sets and strings, and

definitions have been supplied for the ‘%’ natural operation and the ‘^^’ and ‘%%’ number

operations

 the CADP header files in supp/cadp have been updated

 the CONVERTER example is no longer recursive so that it can be used with CADP

 the XMAPY and YMAPZ partners for the DOUBLEMAP example have been slightly changed

for validation with both Lotos and BPEL

 the SUPPLIER and DEALER examples have been modified to make verification feasible:

SUPPLIER now cancels a quotation for the dealer that is not selected; a DEALER ignores an

order or cancel for a deal that has not been offered; DEALER reference numbers are now

computed as hash codes instead of being incremented

 Cress has been aligned with Clove 1.1 and now includes Clove property files

 Cress has been aligned with Mint 1.2

 Cress has been aligned with Mustard 1.8

32.23 Version 4.5

Ken Turner, 11th October 2010:

 ‘Deep recursion on subroutine’ warnings from Perl are now suppressed unless diagnostic

reporting is requested (‘-e 0’)

 supp/topo/stir.* have been updated to support Hash for IVR

 supp/cadp/Stirling_TEXT.h and cress_expand have been updated to have a different default

text enumeration ("DEFAULT", "TEXT", "ENUMERATION")

 the supp/diagram directory has been renamed palettes and now contains a Chive palette for

DS

 cadp_annotate now ignores an empty signatures file, and has modified mappings for the stir

library as it affects IVR

 for IVR, the Query activity is now supported by cress_lotos and cress_vxml; this is like

Request but with an implicit parameter and variable (e.g. query3, based on the node number)

and implicit grammar (boolean), followed by Yes/No/Else checks on this value after an

implicit Filled event

 for IVR, <Clear> now accepts numerical variables (e.g. 103) and converts them to query

variables for the convenience of Query (e.g. query103 in VoiceXML, key 103 for xqueries in

Lotos)

 for IVR, a repeated branch to a field (Option, Query, Request) is now translated correctly

using <goto nexitem=′...′/>; a repeated branch to something that is not a field is therefore

illegal

83

 for IVR, new GLUCOSE, HANDWASH, LIMB and SMOOTHIE dialogues have been added

(thanks to Lynne J. McMichael, University of Stirling)

 cress_expand now has a subroutine for file age differences, and now uses the age difference

between types.pl and the generated Lotos file to decide whether to run cadp_annotate

 cress_expand now handles limited hashes for use with IVR

 in cress_lotos, get_unknown now correctly handles ‘(‘ following an identifier

 in cress_lotos for IVR, if the top-level process a field (Option, Query, Request), an extra

call for the top-level process is suspended; the top-level process is also ended at code level 1

 in cress_lotos for IVR and SOA, events following Start are no longer put into the handler

array, and this array is no longer sorted into name order

 in cress_lotos for IVR and SOA, more detailed comments are now generated for the event

dispatcher processes

 cress_lotos now annotates for CADP even if it generates no annotations (provided ‘-a .’ is

specified)

 cress_validate now has ‘-b’ (bit state hash size), ‘-d’ (search depth) and ‘-q’ (macro name

qualifier) options as for Mustard

 cress_verify now has a ‘-q’ (macro name qualifier) option as for Clove

 cress_verify now takes the relations none, branch (formerly branching), strong, taucomp (tau

compression with branching reduction) and tauconf (tau confluence with branch reduction)

32.24 Version 4.6

Ken Turner, 27th October 2010:

 the IVR, GS and WS examples have been re-verified with CADP 2009-c and Clove 1.3

 cress_lotos again eliminates ‘^’ from strings (meaning a space) and again allows ‘=’

 cress_lotos now does not repeat behaviour on Terminate or an implicit CatchAll when

translating for CADP (to avoid disallowed recursion via an event handler on either side of a

Fork)

 cress_lotos now creates annotations in upper case for record constructors

32.25 Version 5.0

Ken Turner, 14
th
 January 2014:

 support has been added for the SS (Statistics Service) domain

 a warning, error or panic message is now issued only once, particularly to avoid repeated

complaints about a service partner not being in the configuration diagram

 the path to a Cress diagram can now contain period characters

 Stirling_NUMBER.h has been slightly changed to avoid a warning when using CADP 2010-d

 advice has been added on running ActiveBPEL under JDK 1.6

 the format of automatically generated headers has changed slightly, with the creating user

now included

 DS/GS/SS/WS now support a Void type for an operation that takes no parameters or produces

no result

 stir.lot now has a Void type, a text function basename has been added for SS, and string

indexes have been clarified

 the WS examples address, lender_reset and normalise have been removed

 archived BPEL version 1.1 files (lender1, etc.) have been removed from the archive

 cress_bpel now supports SS, now generates BPEL version 2 by default, now has -o 5 as the

default (i.e. generate Mint test, 5 sec server timeout), and now accepts a -j option to generate a

Java interface that calls the main service

 cress_bpel, cress_expand, cress_realise, cress_test and cress_validate now accept a -k option

to set the server host, user and password for use with secure services

 cress_bpel, cress_cpl, cress_lotos, cress_sdl, cress_vxml now use -c in the opposite sense of

‘omit comments’ (the default being to generate them)

 cress_check and cress_verify now accept but ignore a -k option for compatibility with Chive

84

 cress_common.pm now defines CONFIG_PREFIX for use in other files, and now allows

spaces within CRESSPATH directories

 cress_create now treats ANT_HOME and GLOBUS_LOCATION as optional

 cress_create now handles creation for the SS domain

 cress_create now compiles a Java implementation for the main service (if provided), and does

not specify a Java target since ActiveBPEL can now be made to run under versions later than

JDK 1.5

 cress_create, cress_invoke and cress_test now look in Tomcat/lib (Tomcat 7) rather than

Tomcat/shared/lib (Tomcat 5) for JARs; if you are using Tomcat 5, copy (Windows) or

symlink (Unix) Tomcat/shared/lib to Tomcat/lib.

 cress_deploy now treats GLOBUS_LOCATION as optional

 cress_bpel, cress_cpl, cress_expand, cress_lotos, cress_realise, cress_sdl and cress_vxml

now take a -y option to yield diagram(s) override those in the configuration diagram

 cress_invoke has been added to invoke the Java interface generated for the main service

 cress_lexer now parses guards in a different way such that ‘/’ is unaffected inside a quoted

string

 cress_lotos now supports SS, and now has -n 1 as the default (i.e. generate one instance) and -

r . as the default (i.e. repeat all behaviour at leaf node)

 cress_lotos now correctly checks Join labels for SOA by using the last label stored against its

parent level rather than simply the last label

 cress_parser now allows digits in a diagram name (following the initial letter or underscore)

 cress_realise now generates a realisation in the directory determined by the relevant

configuration file (which may not be located in the main Cress directory)

 cress_statistics has been added to support calculations with statistics packages

 cress_test now treats GLOBUS_LOCATION as optional, and relies on the JDBC_HOME and

JUNIT_HOME environment variables to define the locations of jdbc.jar and junit.jar

 cress_test now handles WS testing for secure servers

 Chive upload files are now mentioned, and deleted by cress_tidy

 cress_undeploy has been added to support undeployment from remote servers

 cress_validate and cress_verify now generate a realisation only on request with the -g option;

this is preserved following execution of the command

